Physical interpretation of certain invariants for vortex filament motion under LIA

In the context of the localized induction approximation (LIA) for the motion of a thin vortex filament in a perfect fluid, the present work deals with certain conserved quantities that emerge from the Betchov–Da Rios equations. Here, by showing that these invariants belong to a countable family of polynomial invariants for the related nonlinear Schrodinger equation (NLSE), it is demonstrated how to interpret them in terms of kinetic energy, pseudohelicity, and associated Lagrangian. It is also shown that under LIA both linear momentum and angular momentum are conserved quantities and the relation between these quantities and the whole family of polynomial invariants is discussed.

[1]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[2]  R. Betchov On the curvature and torsion of an isolated vortex filament , 1964, Journal of Fluid Mechanics.

[3]  F. R. Hama,et al.  Localized‐Induction Concept on a Curved Vortex and Motion of an Elliptic Vortex Ring , 1965 .

[4]  George Keith Batchelor,et al.  An Introduction to Fluid Dynamics. , 1969 .

[5]  S. Kida A vortex filament moving without change of form , 1981, Journal of Fluid Mechanics.

[6]  H. K. Moffatt Topological aspects of the dynamics of fluids and plasmas , 1992 .

[7]  Intrinsic equations for the kinematics of a classical vortex string in higher dimensions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[8]  A. W. Marris,et al.  Vector fields and flows on developable surfaces , 1969 .

[9]  E. J. Hopfinger,et al.  Vortex solitary waves in a rotating, turbulent flow , 1982, Nature.

[10]  Bending waves on inviscid columnar vortices , 1986 .

[11]  E. J. Hopfinger,et al.  Wave motions on vortex cores , 1985, Journal of Fluid Mechanics.

[12]  Hydrodynamical description of the continuous Heisenberg chain , 1981 .

[13]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[14]  Y. Fukumoto,et al.  Three-dimensional distortions of a vortex filament with axial velocity , 1991, Journal of Fluid Mechanics.

[15]  A. Sym Soliton surfaces , 1984 .

[16]  Joel Langer,et al.  Poisson geometry of the filament equation , 1991 .

[17]  Y. Fukumoto On Integral Invariants for Vortex Motion under the Localized Induction Approximation , 1987 .

[18]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[19]  F. R. Hama Progressive Deformation of a Curved Vortex Filament by its Own Induction , 1962 .

[20]  Y. Kimura Transport properties of waves on a vortexes filament , 1989 .

[21]  Luigi Sante Da Rios Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque , 1906 .

[22]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[23]  Renzo L. Ricca,et al.  Rediscovery of Da Rios equations , 1991, Nature.

[24]  S. Leibovich,et al.  Soliton propagation on vortex cores and the Hasimoto soliton , 1983 .

[25]  J. Jiménez The Global Geometry of Turbulence , 1991 .

[26]  D. Levi,et al.  N-solitons on a vortex filament☆ , 1983 .

[27]  P. Gragert,et al.  Exact solution to localized-induction-approximation equation modeling smoke ring motion. , 1986, Physical review letters.

[28]  James P. Keener,et al.  Knotted vortex filaments in an ideal fluid , 1990, Journal of Fluid Mechanics.

[29]  C. Truesdell The Kinematics Of Vorticity , 1954 .

[30]  Line Motion in Terms of Nonlinear Schrödinger Equations , 1985 .

[31]  Da Rios,et al.  On the motion of an unbounded fluid with a vortex filament of any shape , 1906 .

[32]  T. Kambe,et al.  Acoustic emissions by vortex motions , 1986, Journal of Fluid Mechanics.

[33]  Emil J. Hopfinger,et al.  Turbulence and waves in a rotating tank , 1982, Journal of Fluid Mechanics.

[34]  H. Hasimoto,et al.  A soliton on a vortex filament , 1972, Journal of Fluid Mechanics.