Fixed Points of the Smoothing Transform: the Boundary Case

Let $A=(A_1,A_2,A_3,\ldots)$ be a random sequence of non-negative numbers that are ultimately zero with $E[\sum A_i]=1$ and $E \left[\sum A_{i} \log A_i \right] \leq 0$. The uniqueness of the non-negative fixed points of the associated smoothing transform is considered. These fixed points are solutions to the functional equation $\Phi(\psi)= E \left[ \prod_{i} \Phi(\psi A_i) \right], $ where $\Phi$ is the Laplace transform of a non-negative random variable. The study complements, and extends, existing results on the case when $E\left[\sum A_{i} \log A_i \right]<0$. New results on the asymptotic behaviour of the solutions near zero in the boundary case, where $E\left[\sum A_{i} \log A_i \right]=0$, are obtained.

[1]  J. Neveu Multiplicative Martingales for Spatial Branching Processes , 1988 .

[2]  Quansheng Liu,et al.  On generalized multiplicative cascades , 2000 .

[3]  Olle Nerman,et al.  On the convergence of supercritical general (C-M-J) branching processes , 1981 .

[4]  J. Kahane,et al.  Sur certaines martingales de Benoit Mandelbrot , 1976 .

[5]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[6]  M. Bramson Convergence of solutions of the Kolmogorov equation to travelling waves , 1983 .

[7]  R. Durrett,et al.  Fixed points of the smoothing transformation , 1983 .

[8]  W. Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. II , 1972, The Mathematical Gazette.

[9]  Russell Lyons,et al.  A Simple Path to Biggins’ Martingale Convergence for Branching Random Walk , 1998, math/9803100.

[10]  H. McKean Application of brownian motion to the equation of kolmogorov-petrovskii-piskunov , 1975 .

[11]  J. Biggins,et al.  Martingale convergence in the branching random walk , 1977, Journal of Applied Probability.

[12]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[13]  Andreas E. Kyprianou,et al.  Slow variation and uniqueness of solutions to the functional equation in the branching random walk , 1998, Journal of Applied Probability.

[14]  Dimitris Gatzouras On the lattice case of an almost-sure renewal theorem for branching random walks , 2000, Advances in Applied Probability.

[15]  A. Iksanov,et al.  On fixed points of Poisson shot noise transforms , 2002, Advances in Applied Probability.

[16]  A. Kyprianou Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris' probabilistic analysis , 2004 .

[17]  S. R. Harris,et al.  Travelling-waves for the FKPP equation via probabilistic arguments , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[18]  Aleksander M. Iksanov Elementary fixed points of the BRW smoothing transforms with infinite number of summands , 2003 .

[19]  A. Caliebe,et al.  Fixed points with finite variance of a smoothing transformation , 2003 .

[20]  Quansheng Liu FIXED POINTS OF A GENERALIZED SMOOTHING , 1998 .

[21]  Maury Bramson,et al.  Maximal displacement of branching brownian motion , 1978 .

[22]  A. Pakes ON CHARACTERIZATIONS THROUGH MIXED SUMS , 1992 .

[23]  U. Rösler A fixed point theorem for distributions , 1992 .

[24]  J. Biggins,et al.  Lindley-type equations in the branching random walk , 1998 .

[25]  N. Bingham,et al.  Asymptotic properties of super-critical branching processes II: Crump-Mode and Jirina processes , 1975, Advances in Applied Probability.

[26]  A. Caliebe Symmetric fixed points of a smoothing transformation , 2003, Advances in Applied Probability.

[27]  J. D. Biggins,et al.  Measure change in multitype branching , 2004, Advances in Applied Probability.

[28]  Uwe Rr Osler A Fixed Point Theorem for Distributions , 1999 .

[29]  Andreas E. Kyprianou,et al.  SENETA-HEYDE NORMING IN THE BRANCHING RANDOM WALK , 1997 .