An ab-initio based semi-empirical thermal conductivity model for multiphase uranium-zirconium alloys

[1]  D. Morgan,et al.  A combined ab-initio and empirical model for thermal conductivity of concentrated metal alloys with the focus on binary uranium alloys , 2021 .

[2]  D. Hurley,et al.  Intragranular thermal transport in U–50Zr , 2020 .

[3]  Jiong Yang,et al.  First-principles study of thermal conductivities of uranium aluminides , 2018, Materialia.

[4]  C. Hin,et al.  Combined ab initio and empirical model of the thermal conductivity of uranium, uranium-zirconium, and uranium-molybdenum , 2018, Physical Review Materials.

[5]  Weiming Chen,et al.  Temperature and composition dependent thermal conductivity model for U-Zr alloys , 2018, Journal of Nuclear Materials.

[6]  L. Lindsay,et al.  Ab initio phonon point defect scattering and thermal transport in graphene , 2018 .

[7]  K. Hirose,et al.  Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core , 2016 .

[8]  E. Losada,et al.  Ground state of the U 2 Mo compound: Physical properties of the Ω-phase , 2016, 1602.05552.

[9]  Y. Kim,et al.  Thermal conductivity modeling of U-Mo/Al dispersion fuel , 2015 .

[10]  Isao Tanaka,et al.  Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.

[11]  C. Domain,et al.  First principle calculations of the residual resistivity of defects in metals , 2015 .

[12]  Xin Wang,et al.  First-principles study of ground-state properties of U2Mo. , 2014, Physical chemistry chemical physics : PCCP.

[13]  Y. Kim,et al.  Thermal conductivities of actinides (U, Pu, Np, Cm, Am) and uranium-alloys (U–Zr, U–Pu–Zr and U–Pu–TRU–Zr) ☆ , 2014 .

[14]  Wei Xiong,et al.  Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches , 2013 .

[15]  Wei Xiong,et al.  Thermodynamic modeling of the U–Zr system – A revisit , 2013 .

[16]  S. Dash,et al.  Microstructural and thermophysical properties of U–6 wt.%Zr alloy for fast reactor application , 2012 .

[17]  Junichiro Shiomi,et al.  Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .

[18]  J. Creasy Thermal Properties of Uranium-Molybdenum Alloys: Phase Decomposition Effects of Heat Treatments , 2012 .

[19]  S. Dash,et al.  Thermophysical properties of U2Mo intermetallic , 2012 .

[20]  N. Marzari,et al.  High thermal conductivity in short-period superlattices. , 2011, Nano letters.

[21]  C. B. Basak,et al.  Microstructural evaluation of U-rich U–Zr alloys under near-equilibrium condition , 2011 .

[22]  P. Turchi,et al.  Density-functional study of U-Mo and U-Zr alloys , 2011 .

[23]  Cynthia A. Papesch,et al.  Thermo-physical properties of DU–10 wt.% Mo alloys , 2010 .

[24]  T. Tritt Thermal Conductivity: Theory, Properties, and Applications , 2010 .

[25]  Dario Alfè,et al.  PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..

[26]  F. Delage,et al.  Metallic fuels for advanced reactors , 2009 .

[27]  J. Cheon,et al.  The effect of RE-rich phase on the thermal conductivity of U–Zr–RE alloys , 2009 .

[28]  Douglas E. Burkes,et al.  Fresh Fuel Characterization of U-Mo Alloys , 2008 .

[29]  Zhibin Lin,et al.  Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .

[30]  Donald J. Cleland,et al.  A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .

[31]  David J. Singh,et al.  BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..

[32]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[33]  M. Calandra,et al.  Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.

[34]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[35]  S. I. Abu-eishah,et al.  Correlations for the Thermal Conductivity of Metals as a Function of Temperature , 2001 .

[36]  J. Ziman Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .

[37]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[38]  G. Hofman,et al.  Metallic Fast Reactor Fuels , 2006 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  T. Ogawa,et al.  Interdiffusion in uranium-zirconium solid solutions , 1996 .

[41]  Savrasov,et al.  Electron-phonon interactions and related physical properties of metals from linear-response theory. , 1996, Physical review. B, Condensed matter.

[42]  J. Fink,et al.  Thermal conductivity of zirconium , 1995 .

[43]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[44]  Downer,et al.  Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. , 1994, Physical review. B, Condensed matter.

[45]  G. Lander,et al.  The solid-state properties of uranium A historical perspective and review , 1994 .

[46]  H. Okamoto U-Zr (Uranium-Zirconium) , 1992 .

[47]  G. P. Srivastava,et al.  The Physics of Phonons , 2019 .

[48]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[49]  T. Matsui,et al.  Heat capacity measurements of U0.80Zr0.20 and U0.80Mo0.20 alloys from room temperature to 1300 K , 1989 .

[50]  D. Peterson,et al.  The U-Zr (Uranium-Zirconium) system , 1989 .

[51]  M. Yamawaki,et al.  Thermophysical properties of uranium-zirconium alloys , 1988 .

[52]  Paul L. Rossiter,et al.  The Electrical Resistivity of Metals and Alloys , 1987 .

[53]  R. K. Williams,et al.  Thermal conductivity of metals and alloys , 1986 .

[54]  Moshe Kaveh,et al.  Electron-electron scattering in conducting materials , 1984 .

[55]  John P. Perdew,et al.  Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works , 1980 .

[56]  Yoichi Takahashi,et al.  Heat capacity of metallic uranium and thorium from 80 to 1000 k , 1980 .

[57]  P. Cote,et al.  Origin of Saturation Effects in Electron Transport , 1978 .

[58]  D. Markowitz Calculation of electrical resistivity of highly resistive metallic alloys , 1977 .

[59]  J. W. Halley,et al.  Simple Model for Characterizing the Electrical Resistivity in A − 15 Superconductors , 1977 .

[60]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[61]  Yoichi Takahashi,et al.  Thermal Conductivity and Heat Capacity of Zircaloy-2, -4 and Unalloyed Zirconium , 1975 .

[62]  R. Flora,et al.  Electrical resistivity and thermoelectric power of polycrystalline uranium at elevated temperatures , 1970 .

[63]  L. Alfred Theory of the Resistivity Change in a Metal due to Multiple Point Imperfections , 1966 .

[64]  S. Arajs,et al.  Electrical resistivity of α-uranium from 2° to 300°K , 1964 .

[65]  C. S. Barrett,et al.  Crystal Structure Variations in Alpha Uranium at Low Temperatures , 1963 .

[66]  R. Barnard Some Physical Properties of the γ and δ Phases in the U-Zr System , 1961 .

[67]  A. Dwight The uranium-molybdenum equilibrium diagram below 900° C , 1960 .

[68]  E. Boyko The structure of the δ phase in the uranium–zirconium system , 1957 .

[69]  K. Smith THE ELECTRICAL CONDUCTIVITY OF URANIUM , 1957 .

[70]  E. K. Halteman The crystal structure of U2Mo , 1957 .

[71]  F. A. Rough,et al.  AN EVALUATION OF DATA ON ZIRCONIUM-URANIUM ALLOYS , 1955 .

[72]  V. O. Eriksen,et al.  THE THERMAL CONDUCTIVITY AND ELECTRICAL RESISTIVITY OF URANIUM , 1955 .

[73]  P. Klemens,et al.  The thermal conductivity of dielectric solids at low temperatures (Theoretical) , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.