An ab-initio based semi-empirical thermal conductivity model for multiphase uranium-zirconium alloys
暂无分享,去创建一个
[1] D. Morgan,et al. A combined ab-initio and empirical model for thermal conductivity of concentrated metal alloys with the focus on binary uranium alloys , 2021 .
[2] D. Hurley,et al. Intragranular thermal transport in U–50Zr , 2020 .
[3] Jiong Yang,et al. First-principles study of thermal conductivities of uranium aluminides , 2018, Materialia.
[4] C. Hin,et al. Combined ab initio and empirical model of the thermal conductivity of uranium, uranium-zirconium, and uranium-molybdenum , 2018, Physical Review Materials.
[5] Weiming Chen,et al. Temperature and composition dependent thermal conductivity model for U-Zr alloys , 2018, Journal of Nuclear Materials.
[6] L. Lindsay,et al. Ab initio phonon point defect scattering and thermal transport in graphene , 2018 .
[7] K. Hirose,et al. Electrical resistivity of substitutionally disordered hcp Fe-Si and Fe-Ni alloys: Chemically-induced resistivity saturation in the Earth's core , 2016 .
[8] E. Losada,et al. Ground state of the U 2 Mo compound: Physical properties of the Ω-phase , 2016, 1602.05552.
[9] Y. Kim,et al. Thermal conductivity modeling of U-Mo/Al dispersion fuel , 2015 .
[10] Isao Tanaka,et al. Distributions of phonon lifetimes in Brillouin zones , 2015, 1501.00691.
[11] C. Domain,et al. First principle calculations of the residual resistivity of defects in metals , 2015 .
[12] Xin Wang,et al. First-principles study of ground-state properties of U2Mo. , 2014, Physical chemistry chemical physics : PCCP.
[13] Y. Kim,et al. Thermal conductivities of actinides (U, Pu, Np, Cm, Am) and uranium-alloys (U–Zr, U–Pu–Zr and U–Pu–TRU–Zr) ☆ , 2014 .
[14] Wei Xiong,et al. Correlation and relativistic effects in U metal and U-Zr alloy: Validation of ab initio approaches , 2013 .
[15] Wei Xiong,et al. Thermodynamic modeling of the U–Zr system – A revisit , 2013 .
[16] S. Dash,et al. Microstructural and thermophysical properties of U–6 wt.%Zr alloy for fast reactor application , 2012 .
[17] Junichiro Shiomi,et al. Phonon conduction in PbSe, PbTe, and PbTe 1 − x Se x from first-principles calculations , 2012 .
[18] J. Creasy. Thermal Properties of Uranium-Molybdenum Alloys: Phase Decomposition Effects of Heat Treatments , 2012 .
[19] S. Dash,et al. Thermophysical properties of U2Mo intermetallic , 2012 .
[20] N. Marzari,et al. High thermal conductivity in short-period superlattices. , 2011, Nano letters.
[21] C. B. Basak,et al. Microstructural evaluation of U-rich U–Zr alloys under near-equilibrium condition , 2011 .
[22] P. Turchi,et al. Density-functional study of U-Mo and U-Zr alloys , 2011 .
[23] Cynthia A. Papesch,et al. Thermo-physical properties of DU–10 wt.% Mo alloys , 2010 .
[24] T. Tritt. Thermal Conductivity: Theory, Properties, and Applications , 2010 .
[25] Dario Alfè,et al. PHON: A program to calculate phonons using the small displacement method , 2009, Comput. Phys. Commun..
[26] F. Delage,et al. Metallic fuels for advanced reactors , 2009 .
[27] J. Cheon,et al. The effect of RE-rich phase on the thermal conductivity of U–Zr–RE alloys , 2009 .
[28] Douglas E. Burkes,et al. Fresh Fuel Characterization of U-Mo Alloys , 2008 .
[29] Zhibin Lin,et al. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium , 2008 .
[30] Donald J. Cleland,et al. A new approach to modelling the effective thermal conductivity of heterogeneous materials , 2006 .
[31] David J. Singh,et al. BoltzTraP. A code for calculating band-structure dependent quantities , 2006, Comput. Phys. Commun..
[32] James K. Carson,et al. Thermal conductivity bounds for isotropic, porous materials , 2005 .
[33] M. Calandra,et al. Colloquium : Saturation of electrical resistivity , 2003, cond-mat/0305412.
[34] G. Ceder,et al. The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.
[35] S. I. Abu-eishah,et al. Correlations for the Thermal Conductivity of Metals as a Function of Temperature , 2001 .
[36] J. Ziman. Electrons and Phonons: The Theory of Transport Phenomena in Solids , 2001 .
[37] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[38] G. Hofman,et al. Metallic Fast Reactor Fuels , 2006 .
[39] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[40] T. Ogawa,et al. Interdiffusion in uranium-zirconium solid solutions , 1996 .
[41] Savrasov,et al. Electron-phonon interactions and related physical properties of metals from linear-response theory. , 1996, Physical review. B, Condensed matter.
[42] J. Fink,et al. Thermal conductivity of zirconium , 1995 .
[43] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[44] Downer,et al. Time-resolved electron-temperature measurement in a highly excited gold target using femtosecond thermionic emission. , 1994, Physical review. B, Condensed matter.
[45] G. Lander,et al. The solid-state properties of uranium A historical perspective and review , 1994 .
[46] H. Okamoto. U-Zr (Uranium-Zirconium) , 1992 .
[47] G. P. Srivastava,et al. The Physics of Phonons , 2019 .
[48] Ferreira,et al. Special quasirandom structures. , 1990, Physical review letters.
[49] T. Matsui,et al. Heat capacity measurements of U0.80Zr0.20 and U0.80Mo0.20 alloys from room temperature to 1300 K , 1989 .
[50] D. Peterson,et al. The U-Zr (Uranium-Zirconium) system , 1989 .
[51] M. Yamawaki,et al. Thermophysical properties of uranium-zirconium alloys , 1988 .
[52] Paul L. Rossiter,et al. The Electrical Resistivity of Metals and Alloys , 1987 .
[53] R. K. Williams,et al. Thermal conductivity of metals and alloys , 1986 .
[54] Moshe Kaveh,et al. Electron-electron scattering in conducting materials , 1984 .
[55] John P. Perdew,et al. Theory of nonuniform electronic systems. I. Analysis of the gradient approximation and a generalization that works , 1980 .
[56] Yoichi Takahashi,et al. Heat capacity of metallic uranium and thorium from 80 to 1000 k , 1980 .
[57] P. Cote,et al. Origin of Saturation Effects in Electron Transport , 1978 .
[58] D. Markowitz. Calculation of electrical resistivity of highly resistive metallic alloys , 1977 .
[59] J. W. Halley,et al. Simple Model for Characterizing the Electrical Resistivity in A − 15 Superconductors , 1977 .
[60] H. Monkhorst,et al. SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .
[61] Yoichi Takahashi,et al. Thermal Conductivity and Heat Capacity of Zircaloy-2, -4 and Unalloyed Zirconium , 1975 .
[62] R. Flora,et al. Electrical resistivity and thermoelectric power of polycrystalline uranium at elevated temperatures , 1970 .
[63] L. Alfred. Theory of the Resistivity Change in a Metal due to Multiple Point Imperfections , 1966 .
[64] S. Arajs,et al. Electrical resistivity of α-uranium from 2° to 300°K , 1964 .
[65] C. S. Barrett,et al. Crystal Structure Variations in Alpha Uranium at Low Temperatures , 1963 .
[66] R. Barnard. Some Physical Properties of the γ and δ Phases in the U-Zr System , 1961 .
[67] A. Dwight. The uranium-molybdenum equilibrium diagram below 900° C , 1960 .
[68] E. Boyko. The structure of the δ phase in the uranium–zirconium system , 1957 .
[69] K. Smith. THE ELECTRICAL CONDUCTIVITY OF URANIUM , 1957 .
[70] E. K. Halteman. The crystal structure of U2Mo , 1957 .
[71] F. A. Rough,et al. AN EVALUATION OF DATA ON ZIRCONIUM-URANIUM ALLOYS , 1955 .
[72] V. O. Eriksen,et al. THE THERMAL CONDUCTIVITY AND ELECTRICAL RESISTIVITY OF URANIUM , 1955 .
[73] P. Klemens,et al. The thermal conductivity of dielectric solids at low temperatures (Theoretical) , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.