Real Root Conjecture Fails for Five- and Higher-Dimensional Spheres

AbstractA construction of convex flag triangulations of five- and higher-dimensional spheres, whose h-polynomials fail to have only real roots, is given. We show that there is no such example in dimensions lower than five. A condition weaker than real rootedness is conjectured and some evidence is provided.

[1]  Gil Kalai,et al.  Rigidity and the lower bound theorem 1 , 1987 .

[2]  L. Billera,et al.  Sufficiency of McMullen's conditions for $f$-vectors of simplicial polytopes , 1980 .

[3]  S. R. Gal On Normal Subgroups of Coxeter Groups Generated by Standard Parabolic Subgroups , 2005 .

[4]  The cd-index of fans and lattices , 2004, math/0410513.

[5]  P. Brändén Counterexamples to the Neggers-Stanley conjecture , 2004 .

[6]  Weighted L 2 -cohomology of Coxeter groups , 2004, math/0402377.

[7]  Jean-Pierre Serre Cohomologie des groupes discrets , 1971 .

[8]  Michael H. Freedman,et al.  The topology of four-dimensional manifolds , 1982 .

[9]  R. Stanley Combinatorics and commutative algebra , 1983 .

[10]  R. Stanley Flagf-vectors and thecd-index , 1994 .

[11]  D. Barnette A proof of the lower bound conjecture for convex polytopes. , 1973 .

[12]  Victor Reiner,et al.  On the Charney-Davis and Neggers-Stanley conjectures , 2005, J. Comb. Theory, Ser. A.

[13]  John R. Stembridge,et al.  Counterexamples to the poset conjectures of Neggers, Stanley, and Stembridge , 2006 .

[14]  J. W. Cannon,et al.  Shrinking cell-like decompositions of manifolds. Codimension three , 1979 .

[15]  Ruth Charney,et al.  The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. , 1995 .

[16]  Petter Brand'en Counterexamples to the Neggers-Stanley conjecture , 2004 .

[17]  Vanishing theorems and conjectures for the, $\ell ^2$--homology of right-angled Coxeter groups , 2001, math/0102104.