Flux rope proxies and fan-spine structures in active region NOAA 11897

Employing the high-resolution observations from the Solar Dynamics Observatory (SDO) and the Interface Region Imaging Spectrograph (IRIS), we statistically investigate flux rope proxies in NOAA AR 11897 from 14-Nov-2013 to 19-Nov-2013 and display two fan-spine structures in this AR. For the first time, we detect flux rope proxies of NOAA 11897 for total 30 times in 4 different locations. These flux rope proxies were either tracked in both lower and higher temperature wavelengths or only detected in hot channels. Specially, none of these flux rope proxies was observed to erupt, but just faded away gradually. In addition to these flux rope proxies, we firstly detect a secondary fan-spine structure. It was covered by dome-shaped magnetic fields which belong to a larger fan-spine topology. These new observations imply that considerable amounts of flux ropes can exist in an AR and the complexity of AR magnetic configuration is far beyond our imagination.

[1]  Jun Zhang,et al.  Eruptions of two flux ropes observed by SDO and STEREO , 2013 .

[2]  L. Golub,et al.  Slipping Magnetic Reconnection in Coronal Loops , 2007, Science.

[3]  Jie Zhang,et al.  On the Nature of the Extreme-ultraviolet Late Phase of Solar Flares , 2013 .

[4]  X. L. Yan,et al.  UNWINDING MOTION OF A TWISTED ACTIVE REGION FILAMENT , 2014, 1410.1984.

[5]  Haiyang Li,et al.  EVIDENCE FOR A PRE-ERUPTIVE TWISTED FLUX ROPE USING THE THEMIS VECTOR MAGNETOGRAPH , 2009 .

[6]  G. Stenborg,et al.  SPINNING MOTIONS IN CORONAL CAVITIES , 2010 .

[7]  Jun Zhang,et al.  QUASI-PERIODIC SLIPPING MAGNETIC RECONNECTION DURING AN X-CLASS SOLAR FLARE OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY AND INTERFACE REGION IMAGING SPECTROGRAPH , 2015, 1504.01111.

[8]  T. Forbes A review on the genesis of coronal mass ejections , 2000 .

[9]  B. Kliem,et al.  Photospheric flux cancellation and associated flux rope formation and eruption , 2010, 1011.1227.

[10]  T. Berger,et al.  Emergence of a Helical Flux Rope under an Active Region Prominence , 2008, 0801.1956.

[11]  X. Cheng,et al.  OBSERVING FLUX ROPE FORMATION DURING THE IMPULSIVE PHASE OF A SOLAR ERUPTION , 2011, 1103.5084.

[12]  J. Luciani,et al.  A Twisted Flux Rope Model for Coronal Mass Ejections and Two-Ribbon Flares , 2000, The Astrophysical journal.

[13]  R. Canfield,et al.  Hinode XRT observations of a long-lasting coronal sigmoid , 2008 .

[14]  T. Magara Dynamic and Topological Features of Photospheric and Coronal Activities Produced by Flux Emergence in the Sun , 2006 .

[15]  P. Démoulin,et al.  Slip-Running Reconnection in Quasi-Separatrix Layers , 2006 .

[16]  J. Luciani,et al.  Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion-driven Evolution , 2003 .

[17]  H. Hudson,et al.  Sigmoidal morphology and eruptive solar activity , 1999 .

[18]  Chang Liu,et al.  CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS , 2012, 1207.7345.

[19]  E. Priest,et al.  Critical conditions for magnetic instabilities in force-free coronal loops , 1981 .

[20]  C. J. Wolfson,et al.  The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO) , 2011 .

[21]  Jun Zhang,et al.  Homologous Flux Ropes Observed by SDO/AIA , 2013, 1310.8041.

[22]  E. Priest,et al.  Photospheric Magnetic Field Evolution and Eruptive Flares , 1995 .

[23]  T. Török,et al.  Confined and Ejective Eruptions of Kink-unstable Flux Ropes , 2005, astro-ph/0507662.

[24]  S. Wu,et al.  MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283 , 2013, 1306.1009.

[25]  T. Gombosi,et al.  Eruption of a Buoyantly Emerging Magnetic Flux Rope , 2003 .

[26]  W. Pesnell,et al.  The Solar Dynamics Observatory (SDO) , 2012 .

[27]  A. Hundhausen,et al.  Possible observation of a disconnected magnetic structure in a coronal transient , 1983 .

[28]  J. Luciani,et al.  Three-dimensional Solutions of Magnetohydrodynamic Equationsfor Prominence Magnetic Support: Twisted Magnetic Flux Rope , 1999 .

[29]  E. DeLuca,et al.  Photospheric Flux Cancellation and the Build-up of Sigmoidal Flux Ropes , 2011 .

[30]  O. Olmedo,et al.  PARTIAL TORUS INSTABILITY , 2010 .

[31]  R. Seguin,et al.  The Interface Region Imaging Spectrograph (IRIS) , 2012, 1401.2491.

[32]  X. Cheng,et al.  TWIST ACCUMULATION AND TOPOLOGY STRUCTURE OF A SOLAR MAGNETIC FLUX ROPE , 2013, 1311.1883.

[33]  A. Vourlidas,et al.  FORMATION OF MAGNETIC FLUX ROPES DURING CONFINED FLARING WELL BEFORE THE ONSET OF A PAIR OF MAJOR CORONAL MASS EJECTIONS , 2015, 1507.01165.

[34]  Jun Zhang,et al.  NEW VACUUM SOLAR TELESCOPE OBSERVATIONS OF A FLUX ROPE TRACKED BY A FILAMENT ACTIVATION , 2014, 1403.0714.

[35]  A. Stanger,et al.  The Calm before the Storm: The Link between Quiescent Cavities and Coronal Mass Ejections , 2006, The Astrophysical Journal.

[36]  C. J. Wolfson,et al.  Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO) , 2012 .

[37]  J. Zhang,et al.  Flux rope proxies during 2013 detected by the Solar Dynamics Observatory , 2015 .

[38]  B. Lites Magnetic Flux Ropes in the Solar Photosphere: The Vector Magnetic Field under Active Region Filaments , 2005 .

[39]  T. Török,et al.  The evolution of twisting coronal magnetic flux tubes , 2003 .

[40]  J. Linker,et al.  Using Global Simulations to Relate the Three-Part Structure of Coronal Mass Ejections to In Situ Signatures , 2008 .

[41]  E. Priest,et al.  Three‐dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping , 1995 .

[42]  P. Démoulin,et al.  The Effect of Curvature on Flux-Rope Models of Coronal Mass Ejections , 1998 .

[43]  P. Démoulin,et al.  FORMATION OF TORUS-UNSTABLE FLUX ROPES AND ELECTRIC CURRENTS IN ERUPTING SIGMOIDS , 2009 .

[44]  Y. Fan,et al.  The Emergence of a Twisted Ω-Tube into the Solar Atmosphere , 2001 .

[45]  Jie Zhang,et al.  Observation of an evolving magnetic flux rope before and during a solar eruption , 2012, Nature Communications.

[46]  J. Gosling The solar flare myth , 1993 .

[47]  G. Aulanier,et al.  HOT SPINE LOOPS AND THE NATURE OF A LATE-PHASE SOLAR FLARE , 2013, 1310.1438.

[48]  Jie Zhang,et al.  ON THE ORIGIN OF THE EXTREME-ULTRAVIOLET LATE PHASE OF SOLAR FLARES , 2015, 1504.05333.

[49]  P. Démoulin,et al.  COEXISTING FLUX ROPE AND DIPPED ARCADE SECTIONS ALONG ONE SOLAR FILAMENT , 2010 .

[50]  Chang Liu,et al.  SIGMOID-TO-FLUX-ROPE TRANSITION LEADING TO A LOOP-LIKE CORONAL MASS EJECTION , 2010, 1011.1181.

[51]  J. Finn,et al.  Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines , 1990 .

[52]  Yan Xu,et al.  STRUCTURE, STABILITY, AND EVOLUTION OF MAGNETIC FLUX ROPES FROM THE PERSPECTIVE OF MAGNETIC TWIST , 2015, 1512.02338.

[53]  X. Cheng,et al.  THE DRIVER OF CORONAL MASS EJECTIONS IN THE LOW CORONA: A FLUX ROPE , 2012, 1211.6524.

[54]  G. Aulanier,et al.  SIGMOIDAL ACTIVE REGION ON THE SUN: COMPARISON OF A MAGNETOHYDRODYNAMICAL SIMULATION AND A NONLINEAR FORCE-FREE FIELD MODEL , 2012 .