Photo-pumped GaAs1&-xBix lasing operation with low-temperature-dependent oscillation wavelength

We report here the photo-pumped lasing operation of GaAs1-xBix with low-temperature-dependent oscillation wavelengths, and show future prospects for the fabrication of Bi-based lasers. The GaAs0.975Bi0.025 active layer was grown at 350 °C by molecular beam epitaxy. The lasing oscillation from a GaAs0.975Bi0.025/GaAs semiconductor chip with a Fabry-Perot cavity was observed by photo-pumping. The characteristic temperature of the laser was 83 K in the range between 160 and 240 K. The lasing emission peak energy decreased at a constant rate of -0.18 meV/K, which is 40% of the temperature coefficient of the band gap of GaAs in this temperature range. Above 240 K, the lasing threshold pumping power increased sharply, and the lasing emission peak energy started shifting to higher energies. This result is probably due to carrier behaviors at the GaAs0.975Bi0.025/GaAs heterointerface, in which a large valence band offset and an almost flat conduction band offset are expected.

[1]  Kunishige Oe,et al.  Proposal on a Temperature-Insensitive Wavelength Semiconductor Laser , 1996 .

[2]  K. Oe,et al.  Temperature dependence of Bi behavior in MBE growth of InGaAs/InP , 2007 .

[3]  A. Krotkus,et al.  Valence band anticrossing in GaBixAs1−x , 2007 .

[4]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[5]  O. Wada,et al.  Temperature Dependence of GaAs1-xBix Band Gap Studied by Photoreflectance Spectroscopy , 2003 .

[6]  K. Oe,et al.  New III–V Semiconductor InGaAsBi Alloy Grown by Molecular Beam Epitaxy , 2005 .

[7]  E. O’Reilly,et al.  Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs , 2011, 1111.4394.

[8]  Kunishige Oe,et al.  New Semiconductor Alloy GaAs1-xBix Grown by Metal Organic Vapor Phase Epitaxy , 1998 .

[9]  K. Oe Characteristics of Semiconductor Alloy GaAs1-xBix , 2002 .

[10]  M. Koch,et al.  Clustering effects in Ga(AsBi) , 2010 .

[11]  David G. Cooke,et al.  Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy , 2006 .

[12]  M. Henini,et al.  Molecular beam epitaxy of GaBiAs on (311)B GaAs substrates , 2007 .

[13]  J. David,et al.  Photoluminescence investigation of high quality GaAs1−xBix on GaAs , 2011 .

[14]  T. Tiedje,et al.  Effect of molecular beam epitaxy growth conditions on the Bi content of GaAs1−xBix , 2008 .

[15]  T. Tiedje,et al.  Giant Spin-Orbit Bowing in GaAs$_{1-x}$Bi$_{x}$ , 2007 .

[16]  François Schiettekatte,et al.  Molecular beam epitaxy growth of GaAs1−xBix , 2003 .

[17]  T. Tiedje,et al.  Giant spin-orbit bowing in GaAs1-xBix. , 2006, Physical review letters.

[18]  Saulius Marcinkevicius,et al.  GaBiAs: A material for optoelectronic terahertz devices , 2006 .

[19]  K. Oe,et al.  Metastable GaAsBi Alloy Grown by Molecular Beam Epitaxy , 2003 .

[20]  T. Tiedje,et al.  Composition dependence of photoluminescence of GaAs1-xBix alloys , 2009 .

[21]  J. H. Blokland,et al.  Influence of bismuth incorporation on the valence and conduction band edges of GaAs1−xBix , 2008 .

[22]  S. Ho,et al.  Growth of InxGa1−xAs/GaAs heterostructures using Bi as a surfactant , 2000 .

[23]  K. Oe,et al.  Molecular-beam epitaxy and characteristics of GaNyAs1−x−yBix , 2005 .

[24]  K. Oe,et al.  Raman studies on GaAs1−xBix and InAs1−xBix , 2001 .

[25]  K. Oe,et al.  Growth of GaAs1-xBix/AlyGa1-yAs Multi-Quantum-Well Structures , 2010 .

[26]  J. Kollár,et al.  Bismuth-stabilized (2x1) and (2x4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study , 2008 .

[27]  Yoriko Tominaga,et al.  Low Temperature Dependence of Oscillation Wavelength in GaAs1-xBix Laser by Photo-Pumping , 2010 .

[28]  K. Oe,et al.  Structural characterization of GaAs1−xBix alloy by rutherford backscattering spectrometry combined with the channeling technique , 2003 .

[29]  K. Oe,et al.  Structural investigation of GaAs1-xBix/GaAs multiquantum wells , 2008 .