On Wavewise Entropy Inequality for High Resolution Schemes II: Fully Discrete MUSCL Schemes with Exact Evolution in Small Time

In this paper, we extend the framework and the convergence criteria of wavewise entropy inequality of [H. Yang, Math. Comp., 65 (1996), pp. 45--67] to fully discrete high resolution schemes satisfying certain TVD nonoscillatory conditions. For the Cauchy problem of convex conservation laws in one space dimension, we use one of the criteria to prove the convergence of the MUSCL scheme toward the entropy solution, assuming that each time step of the scheme consists of a minmod slope limiter, an exact time evolution, and a standard cell averaging; the CFL number is less than 0.5; and the initial condition is of bounded variation.

[1]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[2]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[3]  P. Lax,et al.  Systems of conservation laws , 1960 .

[4]  Benoît Perthame,et al.  Un exemple de méthode MUSCL satisfaisant toutes les inégalités d'entropie numériques , 1993 .

[5]  Sukumar Chakravarthy,et al.  High Resolution Schemes and the Entropy Condition , 1984 .

[6]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[7]  Chi-Wang Shu,et al.  On a cell entropy inequality for discontinuous Galerkin methods , 1994 .

[8]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[9]  Yann Brenier,et al.  The discrete one-sided Lipschitz condition for convex scalar conservation laws , 1988 .

[10]  Huanan Yang,et al.  On wavewise entropy inequalities for high-resolution schemes. I: The semidiscrete case , 1996, Math. Comput..

[11]  M. Crandall,et al.  Monotone difference approximations for scalar conservation laws , 1979 .

[12]  Philippe G. LeFloch,et al.  DISCRETE ENTROPY AND MONOTONICITY CRITERIA FOR HYPERBOLIC CONSERVATION LAWS , 1994 .

[13]  N. N. Kuznetsov Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .

[14]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[15]  E. Tadmor,et al.  Convenient total variation diminishing conditions for nonlinear difference schemes. Final report , 1988 .

[16]  Stanley Osher,et al.  Convergence of Generalized MUSCL Schemes , 1985 .

[17]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[18]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[19]  A. I. Vol'pert THE SPACES BV AND QUASILINEAR EQUATIONS , 1967 .

[20]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[21]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[22]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .