Warm plasma activation of CO2 in a rotating gliding arc discharge reactor

Abstract In this study, a rotating gliding arc (RGA) warm plasma has been developed for the conversion of CO2 into CO and O2. The effect of feed flow rate, applied voltage, arc current, and the addition of N2 or Ar on the reaction performance has been investigated. The results show two variation patterns of CO2 conversion and energy efficiency, depending on the specific energy input (SEI): In Pattern A with SEI > 3.5 kJ/L, the CO2 conversion and energy efficiency decrease simultaneously with increasing SEI, while in Pattern B with SEI ≤ 3.5 kJ/L, the energy efficiency and the CO2 conversion show an opposite trend. The recombination of CO and O at high temperatures could be responsible for the decrease of CO2 conversion with rising SEI due to the increased retention time or gas temperature. A CO2 conversion of 4.0-4.4% and energy efficiency of 16-17% can be achieved. Compared to other non-thermal plasmas, the RGA plasma exhibits a lower CO2 conversion but higher energy efficiency, whilst maintaining a flow rate (e.g, 6-7 L/min) that is significantly higher than that of typical non-thermal plasmas (e.g., 20-125 ml/min in dielectric barrier and corona discharges). Increasing the fraction of N2 or Ar promotes the conversion of CO2 but lowers the energy efficiency. N2 is clearly more beneficial for enhancing the CO2 conversion in comparison to Ar. Further enhancement of the reaction performance can be expected by cooling the plasma area to lower the gas temperature, to limit the recombination of CO and O.

[1]  O. B. Frants,et al.  Plasma-Assisted Combustion System for Incineration of Oil Slimes , 2013, IEEE Transactions on Plasma Science.

[2]  Yang Yang,et al.  Rotational, Vibrational, and Excitation Temperatures in Bipolar Nanosecond-Pulsed Diffuse Dielectric-Barrier-Discharge Plasma at Atmospheric Pressure , 2013, IEEE Transactions on Plasma Science.

[3]  S. Schneider,et al.  Climate Change 2001: Synthesis Report: A contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2001 .

[4]  Jianhua Yan,et al.  Rotating gliding arc assisted methane decomposition in nitrogen for hydrogen production , 2014 .

[5]  M. Aldén,et al.  Optical diagnostics of a gliding arc. , 2013, Optics express.

[6]  R. Snyders,et al.  CO2 Conversion in a Microwave Plasma Reactor in the Presence of N2: Elucidating the Role of Vibrational Levels , 2015 .

[7]  Y. Ju,et al.  Characteristics of Gliding Arc and Its Application in Combustion Enhancement , 2008 .

[8]  X. Tu,et al.  Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach , 2017 .

[9]  Chunfei Wu,et al.  Plasma-photocatalytic conversion of CO2 at low temperatures: Understanding the synergistic effect of plasma-catalysis , 2016 .

[10]  H. Matsumoto,et al.  Factors Influencing the Decomposition of CO2in AC Fan-Type Plasma Reactors: Frequency, Waveform, and Concentration Effects , 1999 .

[11]  X. Tu,et al.  CO2 conversion in a gliding arc plasma: Performance improvement based on chemical reaction modeling , 2017 .

[12]  R. Snyders,et al.  Optical characterization of a microwave pulsed discharge used for dissociation of CO2 , 2014 .

[13]  X. Tu,et al.  Atmospheric Pressure Non-Thermal Plasma Activation of CO2 in a Packed-Bed Dielectric Barrier Discharge Reactor. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  M. Graswinckel,et al.  Plasma-driven dissociation of CO2 for fuel synthesis , 2017 .

[15]  Xin Tu,et al.  Decomposition of naphthalene by dc gliding arc gas discharge. , 2010, The journal of physical chemistry. A.

[16]  Dong-Wha Park,et al.  High-Efficient Conversion of CO2 in AC-Pulsed Tornado Gliding Arc Plasma , 2016, Plasma Chemistry and Plasma Processing.

[17]  C. Carter,et al.  Combustion enhancement via stabilized piecewise nonequilibrium gliding arc plasma discharge , 2006 .

[18]  X. Tu,et al.  CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model , 2016 .

[19]  Wing Tsang,et al.  Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds , 1986 .

[20]  F. Zhu,et al.  Dynamic behavior of a rotating gliding arc plasma in nitrogen: effects of gas flow rate and operating current , 2017 .

[21]  Zhiwei Sun,et al.  Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements , 2014 .

[22]  W. Xu,et al.  Decomposition of CO2 Using DC Corona Discharge at Atmospheric Pressure , 2004 .

[23]  J. Whitehead,et al.  Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO2 , 2011 .

[24]  Shengyong Lu,et al.  Determination of Spectroscopic Temperatures and Electron Density in Rotating Gliding Arc Discharge , 2015, IEEE Transactions on Plasma Science.

[25]  P. Gritzmann,et al.  Measurements of 3D slip velocities and plasma column lengths of a gliding arc discharge , 2015 .

[26]  X. Tu,et al.  Steam reforming of toluene as biomass tar model compound in a gliding arc discharge reactor , 2017 .

[27]  A. Gutsol,et al.  Dissociation of CO2 in a low current gliding arc plasmatron , 2011 .

[28]  James Menart,et al.  Rotational and Vibrational Temperature Distributions for a Dielectric Barrier Discharge in Air , 2009 .

[29]  A. Gallimore,et al.  Efficiency of CO2 Dissociation in a Radio-Frequency Discharge , 2011 .

[30]  M. Janda,et al.  Study of Plasma Induced Chemistry by DC Discharges in CO2/N2/H2O Mixtures Above a Water Surface , 2008, Origins of Life and Evolution of Biospheres.

[31]  A. Bogaerts,et al.  Gliding Arc Plasmatron: Providing an Alternative Method for Carbon Dioxide Conversion. , 2017, ChemSusChem.

[32]  Guanguang Xia,et al.  CO2 Decomposition Using Glow Discharge Plasmas , 1999 .

[33]  Alexander Gutsol,et al.  A non-equilibrium plasma source: magnetically stabilized gliding arc discharge: I. Design and diagnostics , 2010 .

[34]  Margaret Figus,et al.  Rotational and Vibrational Temperature Measurements in a High‐Pressure Cylindrical Dielectric Barrier Discharge (C‐DBD) , 2005 .

[35]  M. Cha,et al.  Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane , 2007 .

[36]  R. Allen,et al.  Effects of particle size on CO2 reduction and discharge characteristics in a packed bed plasma reactor , 2016 .

[37]  A. Gallimore,et al.  CO2 dissociation in an atmospheric pressure plasma/catalyst system: a study of efficiency , 2012 .

[38]  Mohammad Reza Rahimpour,et al.  Hydrogenation of CO2 to value-added products—A review and potential future developments , 2014 .

[39]  Y. Chi,et al.  Destruction of acenaphthene, fluorene, anthracene and pyrene by a dc gliding arc plasma reactor. , 2010, Journal of hazardous materials.

[40]  Baowei Wang,et al.  Degradation of CO 2 through dielectric barrier discharge microplasma , 2015 .

[41]  Y. Uytdenhouwen,et al.  CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis , 2017 .

[42]  K. Cen,et al.  Hydrogen Production from Methanol Decomposition in a Gliding Arc Discharge Plasma with High Processing Capacity , 2015 .

[43]  J. Tatibouët,et al.  Carbon dioxide dissociation to carbon monoxide by non-thermal plasma , 2015 .

[44]  Ramses Snoeckx,et al.  Plasma technology - a novel solution for CO2 conversion? , 2017, Chemical Society reviews.

[45]  Matthew W. Kanan,et al.  Carbon dioxide utilization via carbonate-promoted C–H carboxylation , 2016, Nature.

[46]  K. Cen,et al.  Enhanced hydrogen production by methanol decomposition using a novel rotating gliding arc discharge plasma , 2016 .

[47]  Hongxia Liu,et al.  Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma , 2017 .

[48]  K. Cen,et al.  Rotating Gliding Arc Assisted Water Splitting in Atmospheric Nitrogen , 2016, Plasma Chemistry and Plasma Processing.

[49]  S. Lenaerts,et al.  CO2 conversion in a dielectric barrier discharge plasma: N2 in the mix as a helping hand or problematic impurity? , 2016 .

[50]  A. Bogaerts,et al.  The Quest for Value-Added Products from Carbon Dioxide and Water in a Dielectric Barrier Discharge: A Chemical Kinetics Study. , 2017, ChemSusChem.

[51]  Jiajian Zhu,et al.  Water-cooled non-thermal gliding arc for adhesion improvement of glass-fibre-reinforced polyester , 2013 .

[52]  A. Bogaerts,et al.  Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study. , 2015, ChemSusChem.

[53]  Z. Zainal,et al.  Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review , 2015 .

[54]  D. Yang,et al.  Gliding arc plasma processing of CO2 conversion. , 2007, Journal of hazardous materials.

[55]  Ya-Ling He,et al.  Plasma-assisted conversion of CO2 in a dielectric barrier discharge reactor: understanding the effect of packing materials , 2014 .

[56]  Kwan-Tae Kim,et al.  Optimization of NH3 Decomposition by Control of Discharge Mode in a Rotating Arc , 2013, Plasma Chemistry and Plasma Processing.

[57]  O. B. Frants,et al.  Glow-to-Spark Transitions in a Plasma System for Ignition and Combustion Control , 2007, IEEE Transactions on Plasma Science.

[58]  K. Cen,et al.  Non-oxidative decomposition of methanol into hydrogen in a rotating gliding arc plasma reactor , 2015 .

[59]  Jae-Wook Choi,et al.  Conversion of CO2 by Gliding Arc Plasma , 2006 .

[60]  R. Snyders,et al.  Plasma assisted catalytic decomposition of CO2 , 2016 .

[61]  A. Fridman,et al.  Gliding arc gas discharge , 1999 .

[62]  Y. Chun,et al.  Reduction Characteristics of Carbon Dioxide Using a Plasmatron , 2013, Plasma Chemistry and Plasma Processing.

[63]  X. Tu,et al.  Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges , 2010 .

[64]  X. Tu,et al.  Conversion of CO2 in a cylindrical dielectric barrier discharge reactor: Effects of plasma processing parameters and reactor design , 2017 .

[65]  X. Tu,et al.  Atmospheric Pressure and Room Temperature Synthesis of Methanol through Plasma-Catalytic Hydrogenation of CO2 , 2018 .

[66]  M. Aldén,et al.  Translational, rotational, vibrational and electron temperatures of a gliding arc discharge. , 2017, Optics express.

[67]  M. Graswinckel,et al.  Taming microwave plasma to beat thermodynamics in CO2 dissociation. , 2015, Faraday discussions.

[68]  Van de Sanden,et al.  CO and byproduct formation during CO2 reduction in dielectric barrier discharges , 2014 .

[69]  F. Reniers,et al.  Routes to increase the conversion and the energy efficiency in the splitting of CO2 by a dielectric barrier discharge , 2017 .

[70]  Hao Zhang,et al.  Rotating Gliding Arc Codriven by Magnetic Field and Tangential Flow , 2012, IEEE Transactions on Plasma Science.

[71]  H. Berberoğlu,et al.  Dissociation of carbon dioxide using a microhollow cathode discharge plasma reactor: effects of applied voltage, flow rate and concentration , 2015 .

[72]  Cen Ke-fa,et al.  Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas , 2016 .