Large area sub-micron chemical imaging of magnesium in sea urchin teeth.
暂无分享,去创建一个
[1] F De Carlo,et al. Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT). , 2003, Journal of structural biology.
[2] S. Weiner,et al. Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. , 1985, The Journal of experimental zoology.
[3] P. Fratzl,et al. Mapping Lattice Spacing and Composition in Biological Materials by Means of Microbeam X‐Ray Diffraction , 2011 .
[4] Stuart R. Stock,et al. Micro-CT of sea urchin ossicles supplemented with microbeam diffraction , 2004, SPIE Optics + Photonics.
[5] M. Dickinson,et al. CHARACTERIZATION OF E. CHLOROTICUS SEA URCHIN TOOTH USING NANOINDENTATION AND SEM , 2012 .
[6] J. Currey,et al. Structure of a sea urchin tooth , 1976 .
[7] Michael D Morris,et al. Raman Assessment of Bone Quality , 2011, Clinical orthopaedics and related research.
[8] S. Stock,et al. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus. , 2009, Journal of structural biology.
[9] Francesco De Carlo,et al. Self‐Sharpening Mechanism of the Sea Urchin Tooth , 2011 .
[10] L. Qi,et al. From synthetic to biogenic Mg-containing calcites: a comparative study using FTIR microspectroscopy. , 2012, Physical chemistry chemical physics : PCCP.
[11] J. Aizenberg,et al. Mechanism of calcite co-orientation in the sea urchin tooth. , 2009, Journal of the American Chemical Society.
[12] H. Su,et al. Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.
[13] Notburga Gierlinger,et al. Imaging of plant cell walls by confocal Raman microscopy , 2012, Nature Protocols.
[14] P. Fratzl,et al. Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae , 2014, Biophysical journal.
[15] S. Stock,et al. Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. , 2005, Journal of structural biology.
[16] Laura M. Hamm,et al. Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates , 2012 .
[17] S. Stock,et al. X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth. , 2002, Journal of structural biology.
[18] Arthur Veis,et al. Mineral‐related proteins of sea urchin teeth: Lytechinus variegatus , 2002, Microscopy research and technique.
[19] P. Gilbert. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals , 2012 .
[20] Rizhi Wang. Fracture Toughness and Interfacial Design of a Biological Fiber‐Matrix Ceramic Composite in Sea Urchin Teeth , 2005 .
[21] K. Märkel. Morphologic der seeigelzähne II. Die gekielten Zähne der echinacea (Echinodermata, echinoidea) , 1969, Zeitschrift für Morphologie der Tiere.
[22] S. Stock,et al. On the Formation and Functions of High and Very High Magnesium Calcites in the Continuously Growing Teeth of the Echinoderm Lytechinus variegatus: Development of Crystallinity and Protein Involvement , 2011, Cells Tissues Organs.
[23] S. Weiner,et al. The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.
[24] Sidney R. Cohen,et al. Sea Urchin Tooth Design: An “All‐Calcite” Polycrystalline Reinforced Fiber Composite for Grinding Rocks , 2008 .
[25] S. Stock,et al. Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. , 2006, Journal of structural biology.
[26] M. Windbergs,et al. Chemical Imaging of Drug Delivery Systems with Structured Surfaces–a Combined Analytical Approach of Confocal Raman Microscopy and Optical Profilometry , 2013, The AAPS Journal.
[27] Lutz Franzen,et al. Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy , 2012, Journal of biomedical optics.
[28] K. Srnnul,et al. Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study , 2007 .
[29] Peter Fratzl,et al. Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.
[30] A. Willgallis,et al. Polykristalliner Calcit bei Seeigeln (Echinodermata, Echinoidea) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[31] S. J. Salter. II. On the structure and growth of the tooth of Echinus , 1862, Proceedings of the Royal Society of London.
[32] N. Holland,et al. AN AUTORADIOGRAPHIC INVESTIGATION OF TOOTH RENEWAL IN THE PURPLE SEA URCHIN (STRONGYLOCENTROTUS PURPURATUS). , 1965, The Journal of experimental zoology.
[33] W. White. The Carbonate Minerals , 1974 .
[34] L. Qi,et al. Biomineralization of sea urchin teeth , 2010 .
[35] K. Märkel,et al. Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida) , 1986, Zoomorphology.
[36] S. Weiner,et al. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.
[37] Xianghui Xiao,et al. Sea urchin tooth mineralization: calcite present early in the aboral plumula. , 2012, Journal of structural biology.
[38] K. Märkel,et al. Morphologie der Seeigelzähne , 1969, Zeitschrift für Morphologie der Tiere.
[39] S. Weiner,et al. Mineral Deposition and Crystal Growth in the Continuously Forming Teeth of Sea Urchins , 2007 .
[40] S. Coppersmith,et al. Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy , 2011, Proceedings of the National Academy of Sciences.
[41] Robert H. Morris,et al. Intertidal Invertebrates of California , 1980 .
[42] S. Weiner,et al. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.