Large area sub-micron chemical imaging of magnesium in sea urchin teeth.

The heterogeneous and site-specific incorporation of inorganic ions can profoundly influence the local mechanical properties of damage tolerant biological composites. Using the sea urchin tooth as a research model, we describe a multi-technique approach to spatially map the distribution of magnesium in this complex multiphase system. Through the combined use of 16-bit backscattered scanning electron microscopy, multi-channel energy dispersive spectroscopy elemental mapping, and diffraction-limited confocal Raman spectroscopy, we demonstrate a new set of high throughput, multi-spectral, high resolution methods for the large scale characterization of mineralized biological materials. In addition, instrument hardware and data collection protocols can be modified such that several of these measurements can be performed on irregularly shaped samples with complex surface geometries and without the need for extensive sample preparation. Using these approaches, in conjunction with whole animal micro-computed tomography studies, we have been able to spatially resolve micron and sub-micron structural features across macroscopic length scales on entire urchin tooth cross-sections and correlate these complex morphological features with local variability in elemental composition.

[1]  F De Carlo,et al.  Three-dimensional microarchitecture of the plates (primary, secondary, and carinar process) in the developing tooth of Lytechinus variegatus revealed by synchrotron X-ray absorption microtomography (microCT). , 2003, Journal of structural biology.

[2]  S. Weiner,et al.  Organic matrixlike macromolecules associated with the mineral phase of sea urchin skeletal plates and teeth. , 1985, The Journal of experimental zoology.

[3]  P. Fratzl,et al.  Mapping Lattice Spacing and Composition in Biological Materials by Means of Microbeam X‐Ray Diffraction , 2011 .

[4]  Stuart R. Stock,et al.  Micro-CT of sea urchin ossicles supplemented with microbeam diffraction , 2004, SPIE Optics + Photonics.

[5]  M. Dickinson,et al.  CHARACTERIZATION OF E. CHLOROTICUS SEA URCHIN TOOTH USING NANOINDENTATION AND SEM , 2012 .

[6]  J. Currey,et al.  Structure of a sea urchin tooth , 1976 .

[7]  Michael D Morris,et al.  Raman Assessment of Bone Quality , 2011, Clinical orthopaedics and related research.

[8]  S. Stock,et al.  Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus. , 2009, Journal of structural biology.

[9]  Francesco De Carlo,et al.  Self‐Sharpening Mechanism of the Sea Urchin Tooth , 2011 .

[10]  L. Qi,et al.  From synthetic to biogenic Mg-containing calcites: a comparative study using FTIR microspectroscopy. , 2012, Physical chemistry chemical physics : PCCP.

[11]  J. Aizenberg,et al.  Mechanism of calcite co-orientation in the sea urchin tooth. , 2009, Journal of the American Chemical Society.

[12]  H. Su,et al.  Textured fluorapatite bonded to calcium sulphate strengthen stomatopod raptorial appendages , 2014, Nature Communications.

[13]  Notburga Gierlinger,et al.  Imaging of plant cell walls by confocal Raman microscopy , 2012, Nature Protocols.

[14]  P. Fratzl,et al.  Simultaneous Raman Microspectroscopy and Fluorescence Imaging of Bone Mineralization in Living Zebrafish Larvae , 2014, Biophysical journal.

[15]  S. Stock,et al.  Transmission electron microscopy characterization of macromolecular domain cavities and microstructure of single-crystal calcite tooth plates of the sea urchin Lytechinus variegatus. , 2005, Journal of structural biology.

[16]  Laura M. Hamm,et al.  Raman spectroscopic characterization of the magnesium content in amorphous calcium carbonates , 2012 .

[17]  S. Stock,et al.  X-ray absorption microtomography (microCT) and small beam diffraction mapping of sea urchin teeth. , 2002, Journal of structural biology.

[18]  Arthur Veis,et al.  Mineral‐related proteins of sea urchin teeth: Lytechinus variegatus , 2002, Microscopy research and technique.

[19]  P. Gilbert Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals , 2012 .

[20]  Rizhi Wang Fracture Toughness and Interfacial Design of a Biological Fiber‐Matrix Ceramic Composite in Sea Urchin Teeth , 2005 .

[21]  K. Märkel Morphologic der seeigelzähne II. Die gekielten Zähne der echinacea (Echinodermata, echinoidea) , 1969, Zeitschrift für Morphologie der Tiere.

[22]  S. Stock,et al.  On the Formation and Functions of High and Very High Magnesium Calcites in the Continuously Growing Teeth of the Echinoderm Lytechinus variegatus: Development of Crystallinity and Protein Involvement , 2011, Cells Tissues Organs.

[23]  S. Weiner,et al.  The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.

[24]  Sidney R. Cohen,et al.  Sea Urchin Tooth Design: An “All‐Calcite” Polycrystalline Reinforced Fiber Composite for Grinding Rocks , 2008 .

[25]  S. Stock,et al.  Mapping of magnesium and of different protein fragments in sea urchin teeth via secondary ion mass spectroscopy. , 2006, Journal of structural biology.

[26]  M. Windbergs,et al.  Chemical Imaging of Drug Delivery Systems with Structured Surfaces–a Combined Analytical Approach of Confocal Raman Microscopy and Optical Profilometry , 2013, The AAPS Journal.

[27]  Lutz Franzen,et al.  Advanced chemical imaging and comparison of human and porcine hair follicles for drug delivery by confocal Raman microscopy , 2012, Journal of biomedical optics.

[28]  K. Srnnul,et al.  Carbonate ion disorder in synthetic and biogenic magnesian calcites: a Raman spectral study , 2007 .

[29]  Peter Fratzl,et al.  Enamel-like apatite crown covering amorphous mineral in a crayfish mandible , 2012, Nature Communications.

[30]  A. Willgallis,et al.  Polykristalliner Calcit bei Seeigeln (Echinodermata, Echinoidea) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[31]  S. J. Salter II. On the structure and growth of the tooth of Echinus , 1862, Proceedings of the Royal Society of London.

[32]  N. Holland,et al.  AN AUTORADIOGRAPHIC INVESTIGATION OF TOOTH RENEWAL IN THE PURPLE SEA URCHIN (STRONGYLOCENTROTUS PURPURATUS). , 1965, The Journal of experimental zoology.

[33]  W. White The Carbonate Minerals , 1974 .

[34]  L. Qi,et al.  Biomineralization of sea urchin teeth , 2010 .

[35]  K. Märkel,et al.  Ultrastructural investigation of matrix-mediated biomineralization in echinoids (Echinodermata, Echinoida) , 1986, Zoomorphology.

[36]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[37]  Xianghui Xiao,et al.  Sea urchin tooth mineralization: calcite present early in the aboral plumula. , 2012, Journal of structural biology.

[38]  K. Märkel,et al.  Morphologie der Seeigelzähne , 1969, Zeitschrift für Morphologie der Tiere.

[39]  S. Weiner,et al.  Mineral Deposition and Crystal Growth in the Continuously Forming Teeth of Sea Urchins , 2007 .

[40]  S. Coppersmith,et al.  Measurement of c-axis angular orientation in calcite (CaCO3) nanocrystals using X-ray absorption spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[41]  Robert H. Morris,et al.  Intertidal Invertebrates of California , 1980 .

[42]  S. Weiner,et al.  Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.