Lattice defects in microtubules: protofilament numbers vary within individual microtubules

We have used cryo-electron microscopy of vitrified specimens to study microtubules assembled both from three cycle purified tubulin (3x- tubulin) and in cell free extracts of Xenopus eggs. In vitro assembled 3x-tubulin samples have a majority of microtubules with 14 protofilaments whereas in cell extracts most microtubules have 13 protofilaments. Microtubule polymorphism was observed in both cases. The number of protofilaments can change abruptly along individual microtubules usually by single increments but double increments also occur. For 3x-tubulin, increasing the magnesium concentration decreases the proportion of 14 protofilament microtubules and decreases the average separation between transitions in these microtubules. Protofilament discontinuities may correspond to dislocation-like defects in the microtubule surface lattice.

[1]  A. Hyman,et al.  Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts , 1990, Cell.

[2]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[3]  K. Böhm,et al.  Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro. , 1984, Biochimica et biophysica acta.

[4]  J. Rosenbaum,et al.  The in vitro assembly of flagellar outer doublet tubulin , 1978, The Journal of cell biology.

[5]  D. Chrétien,et al.  New data on the microtubule surface lattice , 1991, Biology of the cell.

[6]  F. Suzuki,et al.  Microtubules with 15 subunits in cockroach epidermal cells , 1975, The Journal of cell biology.

[7]  D. L. Roche,et al.  Spindle microtubule differentiation and deployment during micronuclear mitosis in Paramecium , 1985, The Journal of cell biology.

[8]  G. Vigers,et al.  Electron microscopy of frozen-hydrated biological material , 1986, Nature.

[9]  M. Milner,et al.  Centrosomal microtubule-organizing centres and a switch in the control of protofilament number for cell surface-associated microtubules during Drosophila wing morphogenesis , 1986 .

[10]  D. Murphy,et al.  End-to-end annealing of microtubules in vitro , 1986, The Journal of cell biology.

[11]  M. Chalfie,et al.  Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans , 1982, The Journal of cell biology.

[12]  M. Mogensen,et al.  Taxol influences control of protofilament number at microtubule-nucleating sites in Drosophila. , 1990, Journal of cell science.

[13]  K. Hama,et al.  Structural diversity of microtubules in the supporting cells of the sensory epithelium of guinea pig organ of Corti. , 1982, Journal of electron microscopy.

[14]  G. Borisy,et al.  Control of the structural fidelity of microtubules by initiation sites. , 1982, Journal of molecular biology.

[15]  G. Langevin,et al.  Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly , 1981, The Journal of cell biology.

[16]  M. Mogensen,et al.  Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila. , 1987, Journal of cell science.

[17]  A. Coulson,et al.  mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. , 1989, Genes & development.

[18]  Francis Crick,et al.  Diffraction by helical structures , 1958 .

[19]  S. Edelstein,et al.  Evidence for a mixed lattice in microtubules reassembled in vitro. , 1980, Journal of molecular biology.

[20]  E. Salmon,et al.  Effects of magnesium on the dynamic instability of individual microtubules. , 1990, Biochemistry.

[21]  U. Eichenlaub-Ritter,et al.  Microtubules with more than 13 protofilaments in the dividing nuclei of ciliates , 1984, Nature.

[22]  L. Wilson,et al.  Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. , 1979, Analytical biochemistry.

[23]  R. Wade,et al.  Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? , 1990, Journal of molecular biology.

[24]  Eric Karsenti,et al.  Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs , 1990, Nature.

[25]  U. Eichenlaub-Ritter Spatiotemporal control of functional specification and distribution of spindle microtubules with 13, 14 and 15 protofilaments during mitosis in the ciliate Nyctotherus. , 1985, Journal of cell science.

[26]  R. Margolis,et al.  Generation of microtubule stability subclasses by microtubule- associated proteins: implications for the microtubule "dynamic instability" model , 1985, The Journal of cell biology.

[27]  R. Dallai,et al.  Microtubular diversity in insect spermatozoa: Results obtained with a new fixative , 1990 .

[28]  R. Hinkley,et al.  Tannic acid-stained microtubules with 12, 13, and 15 protofilaments , 1975, The Journal of cell biology.

[29]  D. H. Snyder,et al.  MICROTUBULES: EVIDENCE FOR 13 PROTOFILAMENTS , 1973, The Journal of cell biology.

[30]  R. Himes,et al.  Alterations in number of protofilaments in microtubules assembled in vitro , 1978, The Journal of cell biology.

[31]  Z. Xu,et al.  Early changes in the substructure of the marginal bundle in human blood platelets responding to adenosine diphosphate. , 1988, Journal of ultrastructure and molecular structure research.