DETAILED KINETIC MODELLING OF N-HEPTANE COMBUSTION

ABSTRACT A detailed chemical kinetic mechanism for the combustion of n-heptane has been assembled and validated for a wide range of combustion regimes. The latter includes counterflow diffusion flames, stirred reactors and premixed flames. Predictions of temperature, major and intermediate species profiles for counterflow diffusion flames show excellent agreement with experimental data. Furthermore, the agreement with experimental data obtained in stirred reactors is generally equal to, or better than, that previously reported in the literature. Finally, premixed burning velocities are also well predicted. The reaction mechanism features 659 elementary reactions and 109 species and is a unique attempt to develop a chemical kinetic mechanism applicable to both flames and stirred reactors.

[1]  M. Cathonnet,et al.  KINETIC STUDY OFN-BUTANE OXIDATION , 1989 .

[2]  Wing Tsang,et al.  Thermal decomposition of cyclopentane and related compounds , 1978 .

[3]  R. Svehla,et al.  Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures , 1962 .

[4]  Jürgen Warnatz,et al.  A detailed chemical kinetic reaction mechanism for the oxidation of iso-octane and n-heptane over an extended temperature range and its application to analysis of engine knock , 1989 .

[5]  H. F. Calcote,et al.  Effect of Molecular Structure on Burning Velocity. , 1959 .

[6]  Robert J. Kee,et al.  The computation of stretched laminar methane-air diffusion flames using a reduced four-step mechanism , 1987 .

[7]  Ja Jacques Rijks,et al.  Steam cracking of hydrocarbons 1. Pyrolysis of heptane , 1979 .

[8]  J. C. Boettner,et al.  Kinetic study of n‐heptane oxidation , 1992 .

[9]  P. Dagaut,et al.  Kinetic modeling of propane oxidation , 1987 .

[10]  Robert J. Kee,et al.  Calculation of the structure and extinction limit of a methane-air counterflow diffusion flame in the forward stagnation region of a porous cylinder , 1985 .

[11]  H. Tsuji,et al.  The structure of counterflow diffusion flames in the forward stagnation region of a porous cylinder , 1969 .

[12]  W. Tsang Thermal stability of cyclohexane and 1‐hexene , 1978 .

[13]  J. Aldred,et al.  The mechanism of combustion of droplets and spheres of liquid n-heptane , 1971 .

[14]  C. Westbrook,et al.  A kinetic modeling study of n-pentane oxidation in a well-stirred reactor , 1988 .

[15]  J. C. Boettner,et al.  Kinetic study of 1-butene oxidation in a jet-stirred flow reactor , 1989 .

[16]  M. Smooke,et al.  Analysis of the structure and mechanisms of extinction of a counterflow methanol-air diffusion flame , 1989 .

[17]  J. Elgin,et al.  Phase Equilibrium at Elevated Pressures in Ternary Systems of Ethylene and Water with Organic Liquids. Salting Out with a Supercritical Gas. , 1959 .

[18]  R. A. Matula,et al.  Shock Initiated Ignition in Heptane-Oxygen-Argon Mixtures, , 1981 .

[19]  W. P. Jones,et al.  Global reaction schemes for hydrocarbon combustion , 1988 .

[20]  K. M. Leung,et al.  Detailed Kinetic Modeling of C, - C, Alkane Diffusion Flames , 1995 .

[21]  L. Kirsch,et al.  The autoignition of hydrocarbon fuels at high temperatures and pressures—Fitting of a mathematical model , 1977 .

[22]  M. Cathonnet,et al.  Kinetic study of N-pentane oxidation , 1991 .

[23]  Hiroshi Tsuji,et al.  Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder , 1971 .

[24]  F. Lacas,et al.  Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations , 1993 .

[25]  A. Liñán,et al.  Global kinetics for n-heptane ignition at high pressures , 1992 .

[26]  P. Dagaut,et al.  Propyne Oxidation: A Kinetic Modeling Study , 1990 .

[27]  W. Jones,et al.  The Calculation of the Structure of Laminar Counterflow Diffusion Flames Using a Global Reaction Mechanism , 1988 .

[28]  M. Bui-Pham,et al.  Comparison between Experimental Measurements and Numerical Calculations of the Structure of Heptane-Air Diffusion Flames , 1991 .

[29]  S. Abdel-Khalik,et al.  A chromatographic and interferometric study of the diffusion flame around a simulated fuel drop , 1975 .

[30]  D. J. Seery,et al.  Internal aerodynamics of gas sampling probes , 1982 .

[31]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[32]  M. Y. Hussaini,et al.  Major Research Topics in Combustion , 1992 .

[33]  A. Hamins,et al.  The structure of diffusion flames burning pure, binary, and ternary solutions of methanol, heptane, and toluene☆ , 1987 .

[34]  P. Dagaut,et al.  Kinetics of ethane oxidation , 1991 .

[35]  Robert J. Kee,et al.  On reduced mechanisms for methaneair combustion in nonpremixed flames , 1990 .

[36]  G. Skevis,et al.  Detailed kinetic modeling of premixed benzene flames , 1994 .

[37]  P. Lindstedt,et al.  Simplified Soot Nucleation and Surface Growth Steps for Non-Premixed Flames , 1994 .

[38]  A. Susu,et al.  Kinetics and mechanism of the thermal cracking of n-heptane , 1988 .

[39]  A. C. Nixon,et al.  Endothermic fuels for hypersonic vehicles , 1968 .

[40]  W. Pitz,et al.  Shock tube ignition of octanes , 1989 .

[41]  C. M. Coats,et al.  Investigation of the ignition and combustion of n-heptane-oxygen mixtures , 1979 .

[42]  R. W. Bilger,et al.  On reduced mechanisms for methane-air combustion , 1991 .

[43]  Ian M. Kennedy,et al.  Predictions of soot in laminar diffusion flames , 1990 .