Selbstorganisierte Gelbildner für die organische Elektronik

Die Natur erzeugt Materialien durch chemische Synthese und molekulare Selbstorganisation unter Beteiligung nichtkovalenter Krafte. Wissenschaftler haben von diesen Phanomenen gelernt und dieses Wissen genutzt, um selbstorganisierte kunstliche Materialien vielfaltiger Grosen, Formen und Eigenschaften fur ein breites Spektrum von Anwendungen herzustellen. Ein besonders interessantes Gebiet ist die losungsmittelunterstutzte Gelierung funktioneller organischer Molekule zur Bildung eindimensionaler Fasern. Solche Fasern weisen hervorragende elektronische Eigenschaften auf und sind vielversprechende Materialien fur die organische Elektronik, insbesondere fur Heterokontakt-Solarzellen. Dieser Kurzaufsatz beschreibt, wie Methoden der molekularen Selbstorganisation zur Entwicklung weicher funktioneller Materialien mit Anwendungen in elektronischen Bauelementen wie organischen Feldeffekttransistoren und organischen Solarzellen beigetragen haben.

[1]  David K Smith,et al.  High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. , 2008, Angewandte Chemie.

[2]  H. Murayama,et al.  Structural and electronic properties of extremely long perylene bisimide nanofibers formed through a stoichiometrically mismatched, hydrogen-bonded complexation. , 2010, Small.

[3]  F. Würthner,et al.  Self-assembly of semiconductor organogelator nanowires for photoinduced charge separation. , 2009, ACS nano.

[4]  C. Rovira,et al.  Chiral molecular tapes from novel tetra(thiafulvalene-crown-ether)-substituted phthalocyanine building blocks. , 2005, Chemical communications.

[5]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[6]  M. Iyoda,et al.  Self-assembly and Nanostructure Formation of Multi-functional Organic π-Donors , 2007 .

[7]  T. Fukushima,et al.  Self-Assembled Hexa-peri-hexabenzocoronene Graphitic Nanotube , 2004, Science.

[8]  S. Yagai,et al.  Interconvertible oligothiophene nanorods and nanotapes with high charge-carrier mobilities. , 2009, Chemistry.

[9]  Andrew R. Hirst,et al.  “High‐Tech”‐Anwendungen von supramolekularen nanostrukturierten Gelmaterialien – von der regenerativen Medizin bis hin zu elektronischen Bauelementen , 2008 .

[10]  M. Pumera,et al.  Platelet graphite nanofibers for electrochemical sensing and biosensing: the influence of graphene sheet orientation. , 2010, Chemistry, an Asian journal.

[11]  R. Tsunashima,et al.  Conductive nanoscopic fibrous assemblies containing helical tetrathiafulvalene stacks. , 2009, Chemistry, an Asian journal.

[12]  Xu‐Bing Li,et al.  Organogelators based on TTF supramolecular assemblies: synthesis, characterization, and conductive property. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. Amabilino,et al.  Gels as a soft matter route to conducting nanostructured organic and composite materials , 2010 .

[14]  Takayoshi Nakamura,et al.  Molecularly assembled nanostructures of a redox-active organogelator. , 2005, Angewandte Chemie.

[15]  M. Iyoda,et al.  Self-assembly and Solvatochromic Fiber Formation of 4,5-Bis(dodecylthio)tetrathiafulvalene-4'-carboxylic Acid and Its Derivatives , 2007 .

[16]  H. Murayama,et al.  Rational construction of perylene bisimide columnar superstructures with a biased helical sense. , 2011, Chemistry.

[17]  B. Feringa,et al.  Efficient Intermolecular Charge Transport in Self-Assembled Fibers of Mono- and Bithiophene Bisurea Compounds. , 1999, Angewandte Chemie.

[18]  Yu-Kai Han,et al.  Aggregation and Gelation Effects on the Performance of Poly(3-hexylthiophene)/Fullerene Solar Cells , 2008 .

[19]  Torahiko Ando,et al.  Macromolecular electronic device: Field-effect transistor with a polythiophene thin film , 1986 .

[20]  Masahiko Iyoda,et al.  Conducting supramolecular nanofibers and nanorods. , 2010, Chemical Society reviews.

[21]  M. Woodhouse,et al.  Molecular semiconductors in organic photovoltaic cells. , 2010, Chemical reviews.

[22]  D. Amabilino,et al.  Varied nanostructures from a single multifunctional molecular material , 2011 .

[23]  A. Holmes,et al.  Hierarchical self-assembly of semiconductor functionalized peptide α-helices and optoelectronic properties. , 2011, Journal of the American Chemical Society.

[24]  R. Capelli,et al.  Luminescent ethynyl-pyrene liquid crystals and gels for optoelectronic devices. , 2009, Journal of the American Chemical Society.

[25]  Ben L. Feringa,et al.  Effizienter intermolekularer Ladungstransport in selbstorganisierten Fasern aus Mono‐ und Bithiophenen mit zwei Harnstoffeinheiten , 1999 .

[26]  L. Guo,et al.  Effect of polymer aggregation on the open circuit voltage in organic photovoltaic cells: aggregation-induced conjugated polymer gel and its application for preventing open circuit voltage drop. , 2011, ACS applied materials & interfaces.

[27]  Chang-Qi Ma,et al.  Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. , 2009, Chemical reviews.

[28]  T. Fukushima,et al.  Ambipolar-transporting coaxial nanotubes with a tailored molecular graphene–fullerene heterojunction , 2009, Proceedings of the National Academy of Sciences.

[29]  Jean-Marie Lehn,et al.  Toward Self-Organization and Complex Matter , 2002, Science.

[30]  Donal D. C. Bradley,et al.  Solution-processed organic transistors based on semiconducting blends , 2010 .

[31]  Daoben Zhu,et al.  A low-molecular-mass gelator with an electroactive tetrathiafulvalene group: tuning the gel formation by charge-transfer interaction and oxidation. , 2005, Journal of the American Chemical Society.

[32]  C. Brabec,et al.  Influence of Molecular Weight Distribution on the Gelation of P3HT and Its Impact on the Photovoltaic Performance , 2009 .

[33]  S. Stupp,et al.  Self-assembly and luminescence of oligo(p-phenylene vinylene) amphiphiles. , 2005, Journal of the American Chemical Society.

[34]  Zhijian Chen,et al.  Functional organogels from highly efficient organogelator based on perylene bisimide semiconductor. , 2006, Chemical communications.

[35]  Concepció Rovira,et al.  Supramolecular conducting nanowires from organogels. , 2007, Angewandte Chemie.

[36]  E. W. Meijer,et al.  About Supramolecular Assemblies of π-Conjugated Systems , 2005 .

[37]  E. Laukhina,et al.  Shaping supramolecular nanofibers with nanoparticles forming complementary hydrogen bonds. , 2008, Angewandte Chemie.

[38]  D. Amabilino,et al.  Nanocomposites combining conducting and superparamagnetic components prepared via an organogel , 2011 .

[39]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[40]  Takayuki Kitamura,et al.  Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. , 2002, Chemical communications.

[41]  P. Heremans,et al.  Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. , 2009, Accounts of chemical research.

[42]  S. Stupp,et al.  Semiconducting nanowires from hairpin-shaped self-assembling sexithiophenes. , 2010, The journal of physical chemistry. B.

[43]  R. Weiss,et al.  Organogels and Low Molecular Mass Organic Gelators , 2000 .

[44]  Y. Park,et al.  Synthesis and electrical conductivity of perchlorate-doped TTF–diamide nanofibers with double and triple helix structures , 2010 .

[45]  Hagen Klauk,et al.  Organic electronics : materials, manufacturing and applications , 2006 .

[46]  A. Ajayaghosh,et al.  Organogels as scaffolds for excitation energy transfer and light harvesting. , 2008, Chemical Society reviews.

[47]  Jong Won Chung,et al.  Single-crystalline organic nanowires with large mobility and strong fluorescence emission: a conductive-AFM and space-charge-limited-current study , 2009 .

[48]  J. Sworakowski,et al.  Effect of solution aging on morphology and electrical characteristics of regioregular P3HT FETs fabricated by spin coating and spray coating , 2011 .

[49]  Takashi Kato,et al.  Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. , 2005, Journal of the American Chemical Society.

[50]  D. Vuillaume,et al.  Electroactive nanorods and nanorings designed by supramolecular association of pi-conjugated oligomers. , 2008, Chemistry.

[51]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[52]  J. F. Stoddart,et al.  Organogel formation by a cholesterol-stoppered bistable [2]rotaxane and its dumbbell precursor. , 2008, Journal of the American Chemical Society.

[53]  Jung-Pyo Hong,et al.  Organic single-nanofiber transistors from organogels. , 2009, Chemical communications.

[54]  C. Pearson,et al.  Arborol-Functionalised Tetrathiafulvalene Derivatives: Synthesis and Thin-Film Formation , 2003 .

[55]  T. Fukushima,et al.  Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Ion Danila,et al.  Supramolecular electroactive organogel and conducting nanofibers with C3-symmetrical architectures , 2009 .

[57]  T. Fukushima,et al.  Molecular engineering of coaxial donor-acceptor heterojunction by coassembly of two different hexabenzocoronenes: graphitic nanotubes with enhanced photoconducting properties. , 2007, Journal of the American Chemical Society.

[58]  E. Laukhina,et al.  Solvent effect on the morphology and function of novel gel-derived molecular materials , 2010 .

[59]  A. Asano,et al.  Supramolecularly engineered aggregation of a dipolar dye: vesicular and ribbonlike architectures. , 2010, Angewandte Chemie.

[60]  Richard G. Weiss,et al.  Low Molecular Mass Gelators of Organic Liquids and the Properties of Their Gels. , 1997, Chemical reviews.

[61]  A. Ajayaghosh,et al.  Pi-organogels of self-assembled p-phenylenevinylenes: soft materials with distinct size, shape, and functions. , 2007, Accounts of chemical research.

[62]  F. Würthner,et al.  Self-assembly and semiconductivity of an oligothiophene supergelator , 2010, Beilstein journal of organic chemistry.

[63]  Ayyappanpillai Ajayaghosh,et al.  Self-assembly of thienylenevinylene molecular wires to semiconducting gels with doped metallic conductivity. , 2010, Journal of the American Chemical Society.

[64]  Shu Seki,et al.  Solution phase epitaxial self-assembly and high charge-carrier mobility nanofibers of semiconducting molecular gelators. , 2010, Journal of the American Chemical Society.

[65]  K. Schaumburg,et al.  Synthesis and Structural Characterization of a Bis-arborol-Tetrathiafulvalene Gel: Toward a Self-Assembling "Molecular" Wire , 1994 .

[66]  S. Zakeeruddin,et al.  Quasi-solid-state dye sensitized solar cells with 1,3:2,4-di-O-benzylidene-D-sorbitol derivatives as low molecular weight organic gelators , 2004 .

[67]  Shin‐ichiro Kawano,et al.  Self-Sorting Organogels with p−n Heterojunction Points , 2008 .

[68]  Deqing Zhang,et al.  A new ex-TTF-based organogelator: formation of organogels and tuning with fullerene. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[69]  J. J. Richards,et al.  Aqueous dispersions of colloidal poly(3-hexylthiophene) gel particles with high internal porosity. , 2011, Journal of colloid and interface science.

[70]  C. Rovira,et al.  Novel small molecules for organic field-effect transistors: towards processability and high performance. , 2008, Chemical Society reviews.

[71]  M. Takafuji,et al.  Hybrid self-assembly of a pi gelator and fullerene derivative with photoinduced electron transfer for photocurrent generation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[72]  T. Fukushima,et al.  Photoconductive Coaxial Nanotubes of Molecularly Connected Electron Donor and Acceptor Layers , 2006, Science.

[73]  Takashi Kato,et al.  Liquid-crystalline physical gels. , 2007, Chemical Society reviews.

[74]  T. Kitamura,et al.  Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine , 2001 .

[75]  Jean Roncali,et al.  Molecular bulk heterojunctions: an emerging approach to organic solar cells. , 2009, Accounts of chemical research.

[76]  D. Amabilino,et al.  Use of unnatural beta-peptides as a self-assembling component in functional organic fibres. , 2010, Organic & biomolecular chemistry.

[77]  Guanxin Zhang,et al.  Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups: reversible tuning of the gel-sol transition by redox reactions and light irradiation. , 2010, Journal of the American Chemical Society.

[78]  Jonathan W Steed,et al.  Anion-tuning of supramolecular gel properties , 2009, Nature Chemistry.

[79]  S. Stupp,et al.  Self-assembly and conductivity of hydrogen-bonded oligothiophene nanofiber networks. , 2011, Chemical communications.