Two forms of nanoscale order in amorphous GexSe1−x alloys

We analyze the evolution of nanoscale order in amorphous GexSe1−x alloys using fluctuation electron microscopy. We identify two distinct structural signatures that behave independently as a function of composition. The strong signature of order at scattering vectors k ∼ 0.30 and 0.55 A−1 in Ge-rich alloys (x > 0.40) diminishes rapidly in Se-rich compositions. However, a second signature of order at scattering vector k ∼ 0.15 A−1 appears only for compositions in the middle range x = 0.30–0.53. We interpret that structural ordering occurs among pure Ge tetrahedra or among GeSe4 tetrahedra, respectively, in amorphous GexSe1−x.

[1]  S. G. Bishop,et al.  Evolution of subcritical nuclei in nitrogen-alloyed Ge2Sb2Te5 , 2012 .

[2]  M. Treacy,et al.  The Local Structure of Amorphous Silicon , 2012, Science.

[3]  P. Boolchand,et al.  Melt homogenization and self-organization of chalcogenides glasses: evidence of sharp rigidity, stress and nanoscale phase separation transitions in the GexSe100-x binary , 2011, 1107.4768.

[4]  S. G. Bishop,et al.  Fluctuation transmission electron microscopy: detecting nanoscale order in disordered structures. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  S. G. Bishop,et al.  Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid , 2009, Science.

[6]  K. Campbell,et al.  An investigation of amorphous Ge2Se3 structure for phase change memory devices using fluctuation electron microscopy , 2009 .

[7]  David Alan Drabold,et al.  Competing stoichiometric phases and the intermediate phase in GexSe1−x glasses , 2009 .

[8]  J. Abelson,et al.  Quantifying nanoscale order in amorphous materials: simulating fluctuation electron microscopy of amorphous silicon , 2007 .

[9]  David Alan Drabold,et al.  An intermediate phase in GexSe1−x glasses: experiment and simulation , 2007 .

[10]  P. Salmon The structure of tetrahedral network glass forming systems at intermediate and extended length scales , 2007 .

[11]  P. Salmon Structure of liquids and glasses in the Ge–Se binary system , 2007 .

[12]  Ian McNulty,et al.  Fluctuation microscopy: a probe of medium range order , 2005 .

[13]  Gabriel J. Cuello,et al.  Topological versus chemical ordering in network glasses at intermediate and extended length scales , 2005, Nature.

[14]  P. Gaskell,et al.  Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data , 2005 .

[15]  M. Treacy,et al.  Diffraction microscopy for disordered tetrahedral networks. , 2004 .

[16]  P. Salmon,et al.  Structure of glassy and liquid GeSe2 , 2003 .

[17]  D. Muller,et al.  Fluctuation Microscopy in the STEM , 2001, Microscopy and Microanalysis.

[18]  M. Treacy,et al.  Diminished Medium-Range Order Observed in Annealed Amorphous Germanium , 1997 .

[19]  K. S. Sangunni,et al.  Neutron diffraction studies of GexSe1−x glasses , 1995 .

[20]  S. Elliott The origin of the first sharp diffraction peak in the structure factor of covalent glasses and liquids , 1992 .

[21]  S. R. Elliott,et al.  Medium-range structural order in covalent amorphous solids , 1991, Nature.

[22]  A. Rockett,et al.  Growth of CuInSe2 by two magnetron sputtering techniques , 1989 .

[23]  B. W. Corb,et al.  Atomic models of amorphous selenium , 1982 .

[24]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids II: Medium-range order in chalcogenide alloys and ASi(Ge) , 1981 .

[25]  Y. Inuishi,et al.  Raman and Infrared Studies on Vibrational Properties of Ge–Se Glasses , 1977 .

[26]  H. Schäfer,et al.  Die Kristallstruktur von Germaniumdiselenid , 1976 .

[27]  R. Azoulay,et al.  Devitrification characteristics of GexSe1−x glasses , 1975 .

[28]  Denis Weaire,et al.  Relaxed continuous random network models: (I). Structural characteristics☆ , 1974 .

[29]  J. Graczyk,et al.  A Scanning Electron Diffraction Study of Vapor-Deposited and Ion Implanted Thin Films of Ge (I) , 1973 .