CONTROLLING CHAOS IN A PENDULUM SUBJECTED TO FEEDFORWARD AND FEEDBACK CONTROL

We consider a pendulum subjected to feedforward and feedback control, in which chaotic motions occur when the feedback gain is small. We apply two control techniques recently proposed by Ott and his coworkers so that the pendulum can exhibit the desired motion. The techniques use some dynamical properties relating to chaos. Numerical examples are given and the effectiveness of these control techniques is demonstrated.

[1]  G. A. Johnson,et al.  CONTROLLING CHAOS IN ELECTRONIC CIRCUITS , 1995 .

[2]  Grebogi,et al.  Using the sensitive dependence of chaos (the "butterfly effect") to direct trajectories in an experimental chaotic system. , 1992, Physical review letters.

[3]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[4]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[5]  K. Yagasaki Chaos in a pendulum with feedback control , 1994 .

[6]  A. Gavrielides,et al.  Controlling chaos may induce new attractors in an optical device , 1995 .

[7]  Grebogi,et al.  Using chaos to direct trajectories to targets. , 1990, Physical review letters.

[8]  James A. Yorke,et al.  Dynamics: Numerical Explorations , 1994 .

[9]  J. R. E. O’Malley Singular perturbation methods for ordinary differential equations , 1991 .

[10]  F. W. Schneider,et al.  Control of Chemical Chaos and Noise: A Nonlinear Neural Net Based Algorithm , 1995 .

[11]  Chaos of magnetic domain wall motion: Lyapunov exponent and controlling , 1995 .

[12]  Francis C. Moon,et al.  Chaotic and fractal dynamics , 1992 .

[13]  Kazuyuki Yagasaki Dynamics of a Pendulum with Feedforward and Feedback Control (Special Issue on Nonlinear Dynamics) , 1998 .

[14]  Kazuyuki Yagasaki A simple feedback control system: Bifurcations of periodic orbits and chaos , 1996 .

[15]  Jayant R. Kalagnanam,et al.  Controlling Chaos: The Example of an Impact Oscillator , 1994 .

[16]  William L. Ditto,et al.  Techniques for the control of chaos , 1995 .

[17]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[18]  Tetsuro Endo,et al.  Stabilization of the saddle-type periodic points in phase-locked loop equation by the OGY-control method , 1995 .