Diversity of native nicotinic receptor subtypes in mammalian brain

[1]  B. Sankaran,et al.  Crystal structure of acetylcholine binding protein (AChBP) from Aplysia Californica in complex with click chemistry compound (3-exo)-8,8-dimethyl-3-[4-(pyridin-4-yl)-1H-1,2,3-triazol-1-yl]-8-azoniabicyclo[3.2.1]octane , 2015 .

[2]  Michael J Higley,et al.  Neuromodulation by acetylcholine: examples from schizophrenia and depression , 2014, Current Opinion in Neurobiology.

[3]  U. Maskos,et al.  The Novel α7β2-Nicotinic Acetylcholine Receptor Subtype Is Expressed in Mouse and Human Basal Forebrain: Biochemical and Pharmacological Characterization , 2014, Molecular Pharmacology.

[4]  H. Lester,et al.  The Duplicated α7 Subunits Assemble and Form Functional Nicotinic Receptors with the Full-length α7* , 2014, The Journal of Biological Chemistry.

[5]  H. Lester,et al.  Differential Expression and Function of Nicotinic Acetylcholine Receptors in Subdivisions of Medial Habenula , 2014, The Journal of Neuroscience.

[6]  J. A. Dani,et al.  Nicotine Enhances Excitability of Medial Habenular Neurons via Facilitation of Neurokinin Signaling , 2014, The Journal of Neuroscience.

[7]  J. Steinbach,et al.  The Nicotinic α5 Subunit Can Replace Either an Acetylcholine-Binding or Nonbinding Subunit in the α4β2* Neuronal Nicotinic Receptor , 2014, Molecular Pharmacology.

[8]  C. Gotti,et al.  Habenular expression of rare missense variants of the β4 nicotinic receptor subunit alters nicotine consumption , 2013, Front. Hum. Neurosci..

[9]  J. Hammond,et al.  Postmortem Brain: An Underutilized Substrate for Studying Severe Mental Illness , 2014, Neuropsychopharmacology.

[10]  S. Colombo,et al.  Biogenesis, trafficking and up-regulation of nicotinic ACh receptors. , 2013, Biochemical pharmacology.

[11]  J. Dougherty,et al.  Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons , 2013, Proceedings of the National Academy of Sciences of the United States of America.

[12]  High-affinity nicotinic acetylcholine receptor expression and trafficking abnormalities in psychiatric illness , 2013, Psychopharmacology.

[13]  E. Sher,et al.  Contrasting Properties of α7-Selective Orthosteric and Allosteric Agonists Examined on Native Nicotinic Acetylcholine Receptors , 2013, PloS one.

[14]  D. Bertrand,et al.  Nicotinic acetylcholine receptors: from basic science to therapeutics. , 2013, Pharmacology & therapeutics.

[15]  F. Sala,et al.  Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits , 2012, Journal of neurochemistry.

[16]  H. Lester,et al.  Insights into the Neurobiology of the Nicotinic Cholinergic System and Nicotine Addiction from Mice Expressing Nicotinic Receptors Harboring Gain-of-Function Mutations , 2012, Pharmacological Reviews.

[17]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[18]  A. Orr-Urtreger,et al.  Subunit composition of α5-containing nicotinic receptors in the rodent habenula , 2012, Journal of neurochemistry.

[19]  R. D. D'Souza,et al.  Nicotinic Receptor-Mediated Filtering of Mitral Cell Responses to Olfactory Nerve Inputs Involves the α3β4 Subtype , 2012, The Journal of Neuroscience.

[20]  H. Lester,et al.  α7β2 Nicotinic Acetylcholine Receptors Assemble, Function, and Are Activated Primarily via Their α7-α7 Interfaces , 2012, Molecular Pharmacology.

[21]  C. D. Fowler,et al.  Utility of genetically modified mice for understanding the neurobiology of substance use disorders , 2011, Human Genetics.

[22]  M. Quik,et al.  α6β2* and α4β2* Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease , 2011, Pharmacological Reviews.

[23]  M. Marks,et al.  An autoradiographic survey of mouse brain nicotinic acetylcholine receptors defined by null mutants. , 2011, Biochemical pharmacology.

[24]  J. Yakel,et al.  Allosteric modulators of the α4β2 subtype of neuronal nicotinic acetylcholine receptors. , 2011, Biochemical pharmacology.

[25]  S. Grady,et al.  Role of α6 nicotinic receptors in CNS dopaminergic function: relevance to addiction and neurological disorders. , 2011, Biochemical pharmacology.

[26]  P. Biggin,et al.  Additional Acetylcholine (ACh) Binding Site at α4/α4 Interface of (α4β2)2α4 Nicotinic Receptor Influences Agonist Sensitivity* , 2011, The Journal of Biological Chemistry.

[27]  Z. Gu,et al.  Timing-Dependent Septal Cholinergic Induction of Dynamic Hippocampal Synaptic Plasticity , 2011, Neuron.

[28]  Yan Rao,et al.  Nicotine Decreases Food Intake Through Activation of POMC Neurons , 2011, Science.

[29]  U. Maskos,et al.  Aversion to Nicotine Is Regulated by the Balanced Activity of β4 and α5 Nicotinic Receptor Subunits in the Medial Habenula , 2011, Neuron.

[30]  H. Lester,et al.  Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses , 2011, Neuron.

[31]  Minmin Luo,et al.  Habenula “Cholinergic” Neurons Corelease Glutamate and Acetylcholine and Activate Postsynaptic Neurons via Distinct Transmission Modes , 2011, Neuron.

[32]  C. Gotti,et al.  Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS , 2011, Journal of Neuroimmunology.

[33]  C. D. Fowler,et al.  Habenular α5* nicotinic receptor signaling controls nicotine intake , 2011, Nature.

[34]  J. Renart,et al.  Function of partially duplicated human α77 nicotinic receptor subunit CHRFAM7A gene: potential implications for the cholinergic anti-inflammatory response. , 2011, The Journal of biological chemistry.

[35]  G. Young,et al.  Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site , 2008, Proceedings of the National Academy of Sciences.

[36]  Qun Lu,et al.  Habenular a5 nicotinic receptor subunit signalling controls nicotine intake , 2011 .

[37]  M. Quik,et al.  Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson ’ s Disease , 2011 .

[38]  S. Kracun,et al.  Human α3β4 Neuronal Nicotinic Receptors Show Different Stoichiometry if They Are Expressed in Xenopus Oocytes or Mammalian HEK293 Cells , 2010, PloS one.

[39]  A. Tapper,et al.  The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer , 2010, Progress in Neurobiology.

[40]  O. Hikosaka The habenula: from stress evasion to value-based decision-making , 2010, Nature Reviews Neuroscience.

[41]  J. Changeux,et al.  Nicotine addiction and nicotinic receptors: lessons from genetically modified mice , 2010, Nature Reviews Neuroscience.

[42]  V. Tedesco,et al.  Nicotinic Acetylcholine Receptors in the Mesolimbic Pathway: Primary Role of Ventral Tegmental Area α6β2* Receptors in Mediating Systemic Nicotine Effects on Dopamine Release, Locomotion, and Reinforcement , 2010, The Journal of Neuroscience.

[43]  T. Smart,et al.  Binding, activation and modulation of Cys-loop receptors. , 2010, Trends in pharmacological sciences.

[44]  S. Wonnacott,et al.  Subtype-selective nicotinic agonists enhance olfactory working memory in normal rats: A novel use of the odour span task , 2010, Neuroscience Letters.

[45]  J. Changeux Allosteric receptors: from electric organ to cognition. , 2010, Annual review of pharmacology and toxicology.

[46]  T. Sixma,et al.  Insight in nAChR subtype selectivity from AChBP crystal structures. , 2009, Biochemical pharmacology.

[47]  Michele Zoli,et al.  Structural and functional diversity of native brain neuronal nicotinic receptors. , 2009, Biochemical pharmacology.

[48]  Antoine Taly,et al.  Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system , 2009, Nature Reviews Drug Discovery.

[49]  S. Sine,et al.  Number and Locations of Agonist Binding Sites Required to Activate Homomeric Cys-Loop Receptors , 2009, The Journal of Neuroscience.

[50]  M. Zoli,et al.  Rodent Habenulo–Interpeduncular Pathway Expresses a Large Variety of Uncommon nAChR Subtypes, But Only the α3β4* and α3β3β4* Subtypes Mediate Acetylcholine Release , 2009, The Journal of Neuroscience.

[51]  R. Lukas,et al.  A Novel Nicotinic Acetylcholine Receptor Subtype in Basal Forebrain Cholinergic Neurons with High Sensitivity to Amyloid Peptides , 2009, The Journal of Neuroscience.

[52]  H. Lester,et al.  Demonstration of functional α4-containing nicotinic receptors in the medial habenula , 2008, Neuropharmacology.

[53]  E. Albuquerque,et al.  Mammalian nicotinic acetylcholine receptors: from structure to function. , 2009, Physiological reviews.

[54]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[55]  G. Young,et al.  Potentiation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site , 2008, Proceedings of the National Academy of Sciences.

[56]  Tatiana Foroud,et al.  Variants in nicotinic receptors and risk for nicotine dependence. , 2008, The American journal of psychiatry.

[57]  P. Biggin,et al.  Non-Agonist-Binding Subunit Interfaces Confer Distinct Functional Signatures to the Alternate Stoichiometries of the α4β2 Nicotinic Receptor: An α4–α4 Interface Is Required for Zn2+ Potentiation , 2008, The Journal of Neuroscience.

[58]  J. Lindstrom,et al.  Roles of Accessory Subunits in α4β2* Nicotinic Receptors , 2008, Molecular Pharmacology.

[59]  I. Pastan,et al.  PATE Gene Clusters Code for Multiple, Secreted TFP/Ly-6/uPAR Proteins That Are Expressed in Reproductive and Neuron-rich Tissues and Possess Neuromodulatory Activity* , 2008, Journal of Biological Chemistry.

[60]  M. Trimble,et al.  The Lateral Habenula: No Longer Neglected , 2008, CNS Spectrums.

[61]  E. Sher,et al.  Sazetidine-A Is a Potent and Selective Agonist at Native and Recombinant α4β2 Nicotinic Acetylcholine Receptors , 2008, Molecular Pharmacology.

[62]  K. Kellar,et al.  The alpha4beta2alpha5 nicotinic cholinergic receptor in rat brain is resistant to up-regulation by nicotine in vivo. , 2008, Journal of neurochemistry.

[63]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[64]  K. Kellar,et al.  The α4β2α5 nicotinic cholinergic receptor in rat brain is resistant to up‐regulation by nicotine in vivo , 2007 .

[65]  Henry A. Lester,et al.  Chronic Nicotine Cell Specifically Upregulates Functional α4* Nicotinic Receptors: Basis for Both Tolerance in Midbrain and Enhanced Long-Term Potentiation in Perforant Path , 2007, The Journal of Neuroscience.

[66]  J. Changeux,et al.  Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures , 2007, Journal of neurochemistry.

[67]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[68]  D. Bertrand,et al.  Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. , 2007, Annual review of pharmacology and toxicology.

[69]  J. Lindstrom,et al.  Ca2+ Permeability of the (α4)3(β2)2 Stoichiometry Greatly Exceeds That of (α4)2(β2)3 Human Acetylcholine Receptors , 2006, Molecular Pharmacology.

[70]  J. Lindstrom,et al.  Ca2+ permeability of the (alpha4)3(beta2)2 stoichiometry greatly exceeds that of (alpha4)2(beta2)3 human acetylcholine receptors. , 2007, Molecular pharmacology.

[71]  Thomas A Cleland,et al.  Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats , 2006, The European journal of neuroscience.

[72]  M. Zoli,et al.  Brain nicotinic acetylcholine receptors: native subtypes and their relevance. , 2006, Trends in pharmacological sciences.

[73]  I. McKeith,et al.  Selective nicotinic acetylcholine receptor subunit deficits identified in Alzheimer's disease, Parkinson's disease and dementia with Lewy bodies by immunoprecipitation , 2006, Neurobiology of Disease.

[74]  E. Sher,et al.  α4β2 Nicotinic Receptors with High and Low Acetylcholine Sensitivity: Pharmacology, Stoichiometry, and Sensitivity to Long-Term Exposure to Nicotine , 2006, Molecular Pharmacology.

[75]  A. C. Collins,et al.  Deletion of the α7, β2, or β4 Nicotinic Receptor Subunit Genes Identifies Highly Expressed Subtypes with Relatively Low Affinity for [3H]Epibatidine , 2006, Molecular Pharmacology.

[76]  A. Collins,et al.  Deletion of the alpha7, beta2, or beta4 nicotinic receptor subunit genes identifies highly expressed subtypes with relatively low affinity for [3H]epibatidine. , 2006, Molecular pharmacology.

[77]  A. C. Collins,et al.  Novel Seizure Phenotype and Sleep Disruptions in Knock-In Mice with Hypersensitive α4* Nicotinic Receptors , 2005, The Journal of Neuroscience.

[78]  K. Kellar,et al.  Nicotinic Cholinergic Receptors in the Rat Cerebellum: Multiple Heteromeric Subtypes , 2005, The Journal of Neuroscience.

[79]  T. Liljefors,et al.  Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. , 2005, Journal of medicinal chemistry.

[80]  T. Sixma,et al.  Crystal Structure of Acetylcholine-binding Protein from Bulinus truncatus Reveals the Conserved Structural Scaffold and Sites of Variation in Nicotinic Acetylcholine Receptors* , 2005, Journal of Biological Chemistry.

[81]  Neal L. Benowitz,et al.  Metabolism and Disposition Kinetics of Nicotine , 2005, Pharmacological Reviews.

[82]  C. Gotti,et al.  Subunit Composition of Nicotinic Receptors in Monkey Striatum: Effect of Treatments with 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine or l-DOPA , 2005, Molecular Pharmacology.

[83]  K. Sumikawa,et al.  Comparison of alpha2 nicotinic acetylcholine receptor subunit mRNA expression in the central nervous system of rats and mice. , 2005, The Journal of comparative neurology.

[84]  C. Gotti,et al.  Neuronal nicotinic receptors: from structure to pathology , 2004, Progress in Neurobiology.

[85]  R. Salas,et al.  Decreased Signs of Nicotine Withdrawal in Mice Null for the β4 Nicotinic Acetylcholine Receptor Subunit , 2004, The Journal of Neuroscience.

[86]  A. C. Collins,et al.  Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization , 2004, Science.

[87]  W. Klemm Habenular and interpeduncularis nuclei: shared components in multiple-function networks. , 2004, Medical science monitor : international medical journal of experimental and clinical research.

[88]  S. Vicini,et al.  The Nicotinic Receptor in the Rat Pineal Gland Is an α3β4 Subtype , 2004, Molecular Pharmacology.

[89]  J. Changeux,et al.  Nicotinic receptors regulate the survival of newborn neurons in the adult olfactory bulb. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[90]  S. Wonnacott,et al.  Nicotinic acetylcholine receptors and the regulation of neuronal signalling. , 2004, Trends in pharmacological sciences.

[91]  S. Rogers,et al.  Neuronal and astrocyte expression of nicotinic receptor subunit β4 in the adult mouse brain , 2004, The Journal of comparative neurology.

[92]  J. Changeux,et al.  Knockout and knockin mice to investigate the role of nicotinic receptors in the central nervous system. , 2002, Progress in brain research.

[93]  S. Vicini,et al.  The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype. , 2004, Molecular pharmacology.

[94]  S. Fucile Ca2+ permeability of nicotinic acetylcholine receptors. , 2004, Cell calcium.

[95]  Laure Plantard,et al.  Identification of SLURP-1 as an epidermal neuromodulator explains the clinical phenotype of Mal de Meleda. , 2003, Human molecular genetics.

[96]  J. Lindstrom,et al.  Human α4β2 Acetylcholine Receptors Formed from Linked Subunits , 2003, The Journal of Neuroscience.

[97]  M. Picciotto Nicotine as a modulator of behavior: beyond the inverted U. , 2003, Trends in pharmacological sciences.

[98]  Nicolas Le Novère,et al.  Subunit Composition of Functional Nicotinic Receptors in Dopaminergic Neurons Investigated with Knock-Out Mice , 2003, The Journal of Neuroscience.

[99]  J. Lindstrom,et al.  Alternate Stoichiometries of α4β2 Nicotinic Acetylcholine Receptors , 2003 .

[100]  J. Lindstrom,et al.  Alternate stoichiometries of alpha4beta2 nicotinic acetylcholine receptors. , 2003, Molecular pharmacology.

[101]  J. Lindstrom,et al.  Human alpha4beta2 acetylcholine receptors formed from linked subunits. , 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[102]  J. Changeux,et al.  Knock-out and knock-in mice to investigate the role of nicotinic receptors in the central nervous system. , 2002, Current drug targets. CNS and neurological disorders.

[103]  L. Khiroug,et al.  Rat nicotinic ACh receptor α7 and β2 subunits co‐assemble to form functional heteromeric nicotinic receptor channels , 2002 .

[104]  L. Khiroug,et al.  Rat nicotinic ACh receptor alpha7 and beta2 subunits co-assemble to form functional heteromeric nicotinic receptor channels. , 2002, The Journal of physiology.

[105]  D. Brunzell,et al.  Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. , 2001, Pharmacology & therapeutics.

[106]  K. Kellar,et al.  Neuronal nicotinic acetylcholine receptor alpha3 subunit protein in rat brain and sympathetic ganglion measured using a subunit-specific antibody: regional and ontogenic expression. , 2001, Journal of neurochemistry.

[107]  J. Lindstrom,et al.  Human α6 AChR subtypes: subunit composition, assembly, and pharmacological responses , 2000, Neuropharmacology.

[108]  J. Changeux,et al.  Localization of nAChR subunit mRNAs in the brain of Macaca mulatta , 2000, The European journal of neuroscience.

[109]  W. N. Green,et al.  Neuronal α-Bungarotoxin Receptors Are α7 Subunit Homomers , 2000, The Journal of Neuroscience.

[110]  J. Changeux,et al.  Nicotinic receptors at the amino acid level. , 2000, Annual review of pharmacology and toxicology.

[111]  W. N. Green,et al.  Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. , 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[112]  F. Eusebi,et al.  Nicotinic Acetylcholine Receptors Assembled from the α7 and β3 Subunits* , 1999, The Journal of Biological Chemistry.

[113]  G. Crabtree,et al.  Heteromeric Complexes of α5 and/or α7 Subunits: Effects of Calcium and Potential Role in Nicotine‐Induced Presynaptic Facilitation , 1999 .

[114]  G. Crabtree,et al.  Heteromeric complexes of alpha 5 and/or alpha 7 subunits. Effects of calcium and potential role in nicotine-induced presynaptic facilitation. , 1999, Annals of the New York Academy of Sciences.

[115]  F. Eusebi,et al.  Nicotinic acetylcholine receptors assembled from the alpha7 and beta3 subunits. , 1999, The Journal of biological chemistry.

[116]  J. Changeux,et al.  Identification of Four Classes of Brain Nicotinic Receptors Using β2 Mutant Mice , 1998, The Journal of Neuroscience.

[117]  F. Leslie,et al.  Codistribution of nicotinic acetylcholine receptor subunit α3 and β4 mRNAs during rat brain development , 1997, The Journal of comparative neurology.

[118]  J. Changeux,et al.  Neuronal Nicotinic Receptor a6 Subunit mRNA is Selectively Concentrated in Catecholaminergic Nuclei of the Rat Brain , 1996, The European journal of neuroscience.

[119]  J P Changeux,et al.  Identification of calcium binding sites that regulate potentiation of a neuronal nicotinic acetylcholine receptor. , 1996, The EMBO journal.

[120]  D. Bertrand,et al.  Neuronal nicotinic alpha 7 receptor expressed in Xenopus oocytes presents five putative binding sites for methyllycaconitine. , 1996, The Journal of physiology.

[121]  D. Bertrand,et al.  Pharmacology and Biophysical Properties of α7 and α7 ‐ α8 α‐Bungarotoxin Receptor Subtypes Immunopurified from the Chick Optic Lobe , 1994 .

[122]  J. Daly,et al.  Epibatidine, a potent analgetic and nicotinic agonist. , 1994, Molecular pharmacology.

[123]  D. Bertrand,et al.  Pharmacology and biophysical properties of alpha 7 and alpha 7-alpha 8 alpha-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. , 1994, The European journal of neuroscience.

[124]  P. Whiting,et al.  Three subtypes of alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors are expressed in chick retina , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[125]  J Patrick,et al.  Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat , 1989, The Journal of comparative neurology.

[126]  M. Murray,et al.  Acetylcholine in the interpeduncular nucleus of the rat: normal distribution and effects of deafferentation , 1987, Brain Research.

[127]  P. Clarke,et al.  Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine, and [125I]-alpha-bungarotoxin , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  A. C. Collins,et al.  Characterization of nicotine binding in mouse brain and comparison with the binding of alpha-bungarotoxin and quinuclidinyl benzilate. , 1982, Molecular pharmacology.

[129]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[130]  T. Jessell,et al.  Substance P containing and cholinergic projections from the habenula , 1978, Brain Research.

[131]  J. Patrick,et al.  alpha-Bungarotoxin binding and cholinergic receptor function on a rat sympathetic nerve line. , 1977, The Journal of biological chemistry.

[132]  H. Dale,et al.  Release of acetylcholine at voluntary motor nerve endings , 1936, International anesthesiology clinics.

[133]  H. Dale,et al.  Release of acetylcholine at voluntary motor nerve endings. , 1968, The Journal of physiology.

[134]  J. N. Langley On the reaction of cells and of nerve‐endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine and to curari , 1905, The Journal of physiology.