Incremental principal component analysis for image processing.

A simple method for updating the eigenvectors and eigenvalues of a covariance matrix when a new input sample is added is presented. This proposed method will be a solution for both rank-one modification problems of a symmetric matrix and adaptive principal component analysis.

[1]  Ralph R. Martin,et al.  Merging and Splitting Eigenspace Models , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yongmin Li,et al.  On incremental and robust subspace learning , 2004, Pattern Recognit..

[3]  Deniz Erdogmus,et al.  Recursive Principal Components Analysis Using Eigenvector Matrix Perturbation , 2004, Proceedings of the 2004 14th IEEE Signal Processing Society Workshop Machine Learning for Signal Processing, 2004..

[4]  Wilfried N. Gansterer,et al.  An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems , 2002, TOMS.

[5]  J. Bunch,et al.  Rank-one modification of the symmetric eigenproblem , 1978 .

[6]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[7]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.