Impact of a Disc and Drag Forces on the Existence Linear Stability of Equilibrium Points and Newton-Raphson Basins of Attraction

[1]  Saleem Yousuf,et al.  Effects of the albedo and disc on the zero velocity curves and linear stability of equilibrium points in the generalized restricted three-body problem , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  Jagadish Singh,et al.  Stability analysis of triangular equilibrium points in restricted three-body problem under effects of circumbinary disc, radiation and drag forces , 2019, Journal of Astrophysics and Astronomy.

[3]  R. Aggarwal,et al.  Exploring the fractal basins of convergence in the restricted four-body problem with oblateness , 2018, International Journal of Non-Linear Mechanics.

[4]  Md Chand Asique,et al.  Fractal basins of attraction in the restricted four-body problem when the primaries are triaxial rigid bodies , 2017 .

[5]  E. Zotos Basins of convergence of equilibrium points in the pseudo-Newtonian planar circular restricted three-body problem , 2017, Astrophysics and Space Science.

[6]  E. Zotos Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure , 2016, 1608.08610.

[7]  B. S. Kushvah,et al.  Geometry of halo and Lissajous orbits in the circular restricted three-body problem with drag forces , 2014, 1410.4311.

[8]  Jagadish Singh,et al.  Analytic and numerical treatment of motion of dust grain particle around triangular equilibrium points with post-AGB binary star and disc , 2014 .

[9]  Jagadish Singh,et al.  Poynting–Robertson (P–R) drag and oblateness effects on motion around the triangular equilibrium points in the photogravitational R3BP , 2014 .

[10]  B. S. Kushvah,et al.  Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc , 2013 .

[11]  Jagadish Singh,et al.  Motion in the generalized restricted three-body problem , 2013 .

[12]  C. Douskos Collinear equilibrium points of Hill’s problem with radiation and oblateness and their fractal basins of attraction , 2010 .

[13]  A. Elipe,et al.  Secular solutions at triangular equilibrium point in the generalized photogravitational restricted three body problem , 2009 .

[14]  G. Raskin,et al.  Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators , 2009, 0906.4482.

[15]  B. S. Kushvah Linear stability of equilibrium points in the generalized photogravitational Chermnykh’s problem , 2008, 0806.1132.

[16]  B. S. Kushvah The effect of radiation pressure on the equilibrium points in the generalized photogravitational restricted three body problem , 2008 .

[17]  Friedrich-Schiller-Universitat Jena,et al.  Planets of β Pictoris revisited , 2007, astro-ph/0701526.

[18]  B. S. Kushvah,et al.  Normalization of Hamiltonian in the Generalized Photogravitational Restricted Three Body Problem with Poynting–Robertson Drag , 2006, math/0605505.

[19]  R. O. Gray,et al.  Debris Disks in Main-Sequence Binary Systems , 2006, astro-ph/0612029.

[20]  A. Abdulraheem,et al.  Combined Effects of Perturbations, Radiation, and Oblateness on the Stability of Equilibrium Points in the Restricted Three-Body Problem , 2006 .

[21]  B. S. Kushvah,et al.  Linear Stability of Triangular Equilibrium Points in the Generalized Photogravitational Restricted Three Body Problem with Poynting_Robertson Drag , 2006, math/0602467.

[22]  I. Jiang,et al.  On the Chaotic Orbits of Disk-Star-Planet Systems , 2004, astro-ph/0404408.

[23]  I. Jiang,et al.  Dynamical Effects from Asteroid Belts for Planetary Systems , 2003, Int. J. Bifurc. Chaos.

[24]  Martin W. Lo,et al.  Libration point trajectory design , 1997, Numerical Algorithms.

[25]  Mullard Space Science Laboratory,et al.  A Dust Ring around epsilon Eridani: Analog to the Young Solar System , 1998, astro-ph/9808224.

[26]  M. N. Vrahatis,et al.  A numerical study of the influence of the Poynting-Robertson effect on the equilibrium points of the photogravitational restricted three-body problem II. Out of plane case , 1995 .

[27]  J. Liou,et al.  Radiation Pressure, Poynting-Robertson Drag, and Solar Wind Drag in the Restricted Three-Body Problem , 1995 .

[28]  Carl D. Murray,et al.  Dynamical Effects of Drag in the Circular Restricted Three-Body Problem: I. Location and Stability of the Lagrangian Equilibrium Points , 1994 .

[29]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[30]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[31]  M. Miyamoto,et al.  Three-Dimensional Models for the Distribution of Mass in Galaxies , 1975 .

[32]  H. P. Robertson,et al.  Dynamical Effects of Radiation in the Solar System , 1937 .

[33]  Y. Yang Radiation Pressure , 1905, Nature.