New characterizations of fusion frames (frames of subspaces)

In this article, we give new characterizations of fusion frames, on the properties of their synthesis operators, on the behavior of fusion frames under bounded operators with closed range, and on erasures of subspaces of fusion frames. Furthermore we show that every fusion frame is the image of an orthonormal fusion basis under a bounded surjective operator.

[1]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[2]  A. Ron Review of An introduction to Frames and Riesz bases, applied and numerical Harmonic analysis by Ole Christensen Birkhäuser, Basel, 2003 , 2005 .

[3]  Some properties of frames of subspaces obtained by operator theory methods , 2008 .

[4]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[5]  P. Gǎvruţa,et al.  On the duality of fusion frames , 2007 .

[6]  M. Asgari,et al.  FRAMES OF SUBSPACES AND APPROXIMATION OF THE INVERSE FRAME OPERATOR , 2007 .

[7]  P. Casazza,et al.  Robustness of Fusion Frames under Erasures of Subspaces and of Local Frame Vectors , 2007 .

[8]  P. Casazza,et al.  Fusion frames and distributed processing , 2006, math/0605374.

[9]  Peter G. Casazza,et al.  Modeling sensor networks with fusion frames , 2007, SPIE Optical Engineering + Applications.

[10]  M. Fornasier Quasi-orthogonal decompositions of structured frames , 2004 .

[11]  Wai-Shing Tang,et al.  Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces , 1999 .

[12]  M. Asgari,et al.  Frames and bases of subspaces in Hilbert spaces , 2005 .

[13]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[14]  Ole Christensen Frames and pseudo-inverses , 1995 .

[15]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[16]  Jiu Ding On the perturbation of the reduced minimum modulus of bounded linear operators , 2003, Appl. Math. Comput..

[17]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[18]  P. Casazza,et al.  Frames of subspaces , 2003, math/0311384.

[19]  P G Cazassa,et al.  FRAMES OF SUBSPACES. WAVELETS, FRAMES AND OPERATOR THEORY , 2004 .