Molecular Characterization of the Diversity and Distribution of a Thermal Spring Microbial Community by Using rRNA and Metabolic Genes

ABSTRACT The diversity and distribution of a bacterial community from Coffee Pots Hot Spring, a thermal spring in Yellowstone National Park with a temperature range of 39.3 to 74.1°C and pH range of 5.75 to 6.91, were investigated by sequencing cloned PCR products and quantitative PCR (qPCR) of 16S rRNA and metabolic genes. The spring was inhabited by three Aquificae genera—Thermocrinis, Hydrogenobaculum, and Sulfurihydrogenibium—and members of the Alpha-, Beta-, and Gammaproteobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, and candidate division OP5. The in situ chemical affinities were calculated for 41 potential metabolic reactions using measured environmental parameters and a range of hydrogen and oxygen concentrations. Reactions that use oxygen, ferric iron, sulfur, and nitrate as electron acceptors were predicted to be the most energetically favorable, while reactions using sulfate were expected to be less favorable. Samples were screened for genes used in ammonia oxidation (amoA, bacterial gene only), the reductive tricarboxylic acid (rTCA) cycle (aclB), the Calvin cycle (cbbM), sulfate reduction (dsrAB), nitrogen fixation (nifH), nitrite reduction (nirK), and sulfide oxidation (soxEF1) by PCR. Genes for carbon fixation by the rTCA cycle and nitrogen fixation were detected. All aclB sequences were phylogenetically related and spatially correlated to Sulfurihydrogenibium 16S rRNA gene sequences using qPCR (R2 = 0.99). This result supports the recent finding of citrate cleavage by enzymes other than ATP citrate lyase in the rTCA cycle of the Aquificaceae family. We briefly consider potential biochemical mechanisms that may allow Sulfurihydrogenibium and Thermocrinis to codominate some hydrothermal environments.

[1]  John W. Taylor,et al.  Geographic Barriers Isolate Endemic Populations of Hyperthermophilic Archaea , 2003, Science.

[2]  J. Tiedje,et al.  DNA recovery from soils of diverse composition , 1996, Applied and environmental microbiology.

[3]  W. Liesack,et al.  The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations , 1997, Applied and environmental microbiology.

[4]  G. Olsen,et al.  A phylogenetic analysis of Aquifex pyrophilus. , 1992, Systematic and applied microbiology.

[5]  C. Vetriani,et al.  Autotrophic CO2 fixation via the reductive tricarboxylic acid cycle in different lineages within the phylum Aquificae: evidence for two ways of citrate cleavage. , 2007, Environmental microbiology.

[6]  N. Pace,et al.  Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park , 1994, Applied and environmental microbiology.

[7]  B. Campbell,et al.  Abundance of Reverse Tricarboxylic Acid Cycle Genes in Free-Living Microorganisms at Deep-Sea Hydrothermal Vents , 2004, Applied and Environmental Microbiology.

[8]  J. Amend,et al.  Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. , 2001, FEMS microbiology reviews.

[9]  B. Ward,et al.  Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria , 2001, Applied and Environmental Microbiology.

[10]  R. Huber,et al.  The complete genome of the hyperthermophilic bacterium Aquifex aeolicus , 1998, Nature.

[11]  J. Döbereiner,et al.  A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. , 1978, Canadian journal of microbiology.

[12]  R. Huber,et al.  New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. , 2002, Extremophiles.

[13]  R. Huber,et al.  Thermocrinis ruber gen. nov., sp. nov., a Pink-Filament-Forming Hyperthermophilic Bacterium Isolated from Yellowstone National Park , 1998, Applied and Environmental Microbiology.

[14]  D. Lovley,et al.  Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. , 1999, International journal of systematic bacteriology.

[15]  J. Baross,et al.  Nitrogen Fixation at 92°C by a Hydrothermal Vent Archaeon , 2006, Science.

[16]  R. Huber,et al.  Enzymes of the reductive citric acid cycle in the autotrophic eubacterium Aquifex pyrophilus and in the archaebacterium Thermoproteus neutrophilus , 1993, Archives of Microbiology.

[17]  B. Tindall,et al.  Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., com , 2001, International journal of systematic and evolutionary microbiology.

[18]  D. Prieur,et al.  Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. , 1998, International journal of systematic bacteriology.

[19]  S. Sievert,et al.  Evidence for Autotrophic CO2 Fixation via the Reductive Tricarboxylic Acid Cycle by Members of the ε Subdivision of Proteobacteria , 2005, Journal of bacteriology.

[20]  I. Ferrera,et al.  Diversity of 16S rRNA gene, ITS region and aclB gene of the Aquificales , 2006, Extremophiles.

[21]  J. Baross,et al.  Phylogenetic Diversity of Nitrogenase (nifH) Genes in Deep-Sea and Hydrothermal Vent Environments of the Juan de Fuca Ridge , 2003, Applied and Environmental Microbiology.

[22]  M. Ishii,et al.  Purification, characterization, and gene cloning of thermophilic cytochrome cd1 nitrite reductase from Hydrogenobacter thermophilus TK-6. , 2006, Journal of bioscience and bioengineering.

[23]  J. S. Wells,et al.  The Genus Spirillum: a Taxonomic Study1 , 1973 .

[24]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[25]  M. Könneke,et al.  Cultivation of a Thermophilic Ammonia Oxidizing Archaeon Synthesizing Crenarchaeol , 2022 .

[26]  R. Huber,et al.  Aquifex pyrophilus gen. nov. sp. nov., Represents a Novel Group of Marine Hyperthermophilic Hydrogen-Oxidizing Bacteria , 1992 .

[27]  M. Aoshima Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications , 2007, Applied Microbiology and Biotechnology.

[28]  Jonathan P Zehr,et al.  Nitrogenase gene diversity and microbial community structure: a cross-system comparison. , 2003, Environmental microbiology.

[29]  Y. Sako,et al.  Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. , 2003, International journal of systematic and evolutionary microbiology.

[30]  G. Patel,et al.  Isolation and Characterization of an Anaerobic, Cellulolytic Microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov.† , 1980 .

[31]  K. Nealson,et al.  Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer. , 2003, International journal of systematic and evolutionary microbiology.

[32]  D. M. Ward,et al.  Geographical isolation in hot spring cyanobacteria. , 2003, Environmental microbiology.

[33]  Michael Kühl,et al.  In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  A. Reysenbach,et al.  Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. , 2008, Environmental microbiology.

[35]  J. W. Ball,et al.  Water-chemistry data for selected springs, geysers, and streams in Yellowstone National Park Wyoming, 2001-2002 , 2005 .

[36]  Michael Wagner,et al.  A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring , 2008, Proceedings of the National Academy of Sciences.

[37]  M. Zbinden,et al.  Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium , 2003, Extremophiles.

[38]  E. Stackebrandt,et al.  Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within the Bacteria. , 2006, International journal of systematic and evolutionary microbiology.

[39]  Martin F. Polz,et al.  Bias in Template-to-Product Ratios in Multitemplate PCR , 1998, Applied and Environmental Microbiology.

[40]  Y. Sako,et al.  Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. , 2003, International journal of systematic and evolutionary microbiology.

[41]  B. Campbell,et al.  Evidence of Chemolithoautotrophy in the Bacterial Community Associated with Alvinella pompejana, a Hydrothermal Vent Polychaete , 2003, Applied and Environmental Microbiology.

[42]  N. Pace,et al.  Novel Division Level Bacterial Diversity in a Yellowstone Hot Spring , 1998, Journal of bacteriology.

[43]  Y. Sako,et al.  Sulfurihydrogenibium yellowstonense sp. nov., an extremely thermophilic, facultatively heterotrophic, sulfur-oxidizing bacterium from Yellowstone National Park, and emended descriptions of the genus Sulfurihydrogenibium, Sulfurihydrogenibium subterraneum and Sulfurihydrogenibium azorense. , 2005, International journal of systematic and evolutionary microbiology.

[44]  K. Rusterholtz,et al.  Aquificales in Yellowstone National Park , 2006 .

[45]  T. Komatsu,et al.  Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. , 2001, International journal of systematic and evolutionary microbiology.

[46]  J. Baross,et al.  Nitrogen fixation at 92 degrees C by a hydrothermal vent archaeon. , 2006, Science.

[47]  Philip Hugenholtz,et al.  NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes , 2006, Nucleic Acids Res..

[48]  A. Reysenbach,et al.  Sulfurihydrogenibium azorense, sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. , 2004, International journal of systematic and evolutionary microbiology.

[49]  S. Spring,et al.  Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. , 2006, International journal of systematic and evolutionary microbiology.

[50]  G. Fox,et al.  Phylogenetic position of the genus Hydrogenobacter. , 1994, International journal of systematic bacteriology.

[51]  J. Kristjánsson,et al.  Influence of Sulfide and Temperature on Species Composition and Community Structure of Hot Spring Microbial Mats , 2000, Applied and Environmental Microbiology.

[52]  J. Felsenstein,et al.  A Hidden Markov Model approach to variation among sites in rate of evolution. , 1996, Molecular biology and evolution.

[53]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[54]  J. Amend,et al.  Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA , 2005 .

[55]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[56]  K. Nealson,et al.  Bacterial community shift along a subsurface geothermal water stream in a Japanese gold mine , 2005, Extremophiles.

[57]  F. Rainey,et al.  Desulfurella kamchatkensis sp. nov. and desulfurella propionica sp. nov., new sulfur-respiring thermophilic bacteria from Kamchatka thermal environments. , 1998, International journal of systematic bacteriology.

[58]  R. Fournier Geochemistry and Dynamics of the Yellowstone National Park Hydrothermal System , 1989 .

[59]  Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water , 1995, Archives of Microbiology.

[60]  T. Naganuma,et al.  Phylogenetic Diversity of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase Large-Subunit Genes from Deep-Sea Microorganisms , 2001, Applied and Environmental Microbiology.

[61]  H. Huber,et al.  Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. , 2002, International journal of systematic and evolutionary microbiology.

[62]  A. J. Jones,et al.  At Least 1 in 20 16S rRNA Sequence Records Currently Held in Public Repositories Is Estimated To Contain Substantial Anomalies , 2005, Applied and Environmental Microbiology.

[63]  Y. Sako,et al.  Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. , 2004, International journal of systematic and evolutionary microbiology.

[64]  L. Rothschild,et al.  Life in extreme environments , 2001, Nature.

[65]  N. Pace,et al.  Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  N. Pace,et al.  Microbial Composition of Near-Boiling Silica-Depositing Thermal Springs throughout Yellowstone National Park , 2002, Applied and Environmental Microbiology.

[67]  Y. Igarashi,et al.  The CO2 assimilation via the reductive tricarboxylic acid cycle in an obligately autotrophic, aerobic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus , 1985, Archives of Microbiology.

[68]  Y. Igarashi,et al.  Hydrogenobacter thermophilus gen. Nov., sp. Nov., an extremely thermophilic, aerobic, hydrogen-oxidizing bacterium , 1984 .

[69]  K. Lindström,et al.  International Committee on Systematics of Prokaryotes; Subcommittee on the taxonomy of Agrobacterium and Rhizobium: Minutes of the meeting, 26 July 2004, Toulouse, France , 2005 .

[70]  L. Daniels,et al.  Dinitrogen fixation by a thermophilic methanogenic bacterium , 1984, Nature.

[71]  B. Simoneit,et al.  Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. , 2002, International journal of systematic and evolutionary microbiology.

[72]  C. Vetriani,et al.  Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. , 2004, International journal of systematic and evolutionary microbiology.