Generalized Synchronization with Uncertain Parameters of Nonlinear Dynamic System via Adaptive Control

An adaptive control scheme is developed to study the generalized adaptive chaos synchronization with uncertain chaotic parameters behavior between two identical chaotic dynamic systems. This generalized adaptive chaos synchronization controller is designed based on Lyapunov stability theory and an analytic expression of the adaptive controller with its update laws of uncertain chaotic parameters is shown. The generalized adaptive synchronization with uncertain parameters between two identical new Lorenz-Stenflo systems is taken as three examples to show the effectiveness of the proposed method. The numerical simulations are shown to verify the results.

[1]  Zhaonan Liu The First Integrals of Nonlinear Acoustic Gravity Wave Equations , 2000 .

[2]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[3]  Marcelo A. Savi,et al.  Chaos control using an adaptive fuzzy sliding mode controller with application to a nonlinear pendulum , 2009 .

[4]  Roman Senkerik,et al.  An investigation on evolutionary reconstruction of continuous chaotic systems , 2013, Math. Comput. Model..

[5]  Jun Jiang,et al.  Adaptive synchronization of drive-response fractional-order complex dynamical networks with uncertain parameters , 2014, Commun. Nonlinear Sci. Numer. Simul..

[6]  Darui Zhu,et al.  Modeling and adaptive pinning synchronization control for a chaotic-motion motor in complex network , 2014 .

[7]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[8]  Hamid Reza Karimi,et al.  Robust Observer Design for Unknown Inputs Takagi–Sugeno Models , 2013, IEEE Transactions on Fuzzy Systems.

[9]  Cheng-Hsiung Yang,et al.  Symplectic Synchronization of Lorenz-Stenflo System with Uncertain Chaotic Parameters via Adaptive Control , 2013 .

[10]  Wei Guo Xu,et al.  Chemical chaotic schemes derived from NSG system , 2003 .

[11]  T. Liao,et al.  Controlling chaos of the family of Rossler systems using sliding mode control , 2008 .

[12]  Przemyslaw Perlikowski,et al.  Ragged Synchronizability and Clustering in a Network of Coupled Oscillators , 2009, Recent Advances in Nonlinear Dynamics and Synchronization.

[13]  Yibei Nian,et al.  Controlling Discrete Time T-S Fuzzy Chaotic Systems via Adaptive Adjustment , 2012 .

[14]  Tomasz Kapitaniak,et al.  Chaos-hyperchaos transition in coupled Rössler systems , 2001 .

[15]  Xiaofeng Wu,et al.  Global synchronization criteria for two Lorenz–Stenflo systems via single-variable substitution control , 2010 .

[16]  Cheng-Hsiung Yang,et al.  Symplectic synchronization of different chaotic systems , 2009 .

[17]  M. Yassen Chaos control of chaotic dynamical systems using backstepping design , 2006 .

[18]  Diyi Chen,et al.  Application of Takagi–Sugeno fuzzy model to a class of chaotic synchronization and anti-synchronization , 2013 .

[19]  Choy Heng Lai,et al.  Bifurcation behavior of the generalized Lorenz equations at large rotation numbers , 1997 .

[20]  Cheng-Hsiung Yang,et al.  Nonlinear Dynamic Analysis and Synchronization of Four-Dimensional Lorenz-Stenflo System and Its Circuit Experimental Implementation , 2014 .

[21]  Jianquan Lu,et al.  A new impulsive synchronization criterion for T–S fuzzy model and its applications , 2013 .

[23]  M. Chadli,et al.  Multi‐objective H −  ∕ H ∞  fault detection observer design for Takagi–Sugeno fuzzy systems with unmeasurable premise variables: descriptor approach , 2013 .

[24]  Chin-Teng Lin,et al.  Chaotic Motions in the Real Fuzzy Electronic Circuits (Preprint) , 2012 .

[25]  Steven X. Ding,et al.  H_/H∞ fault detection filter design for discrete-time Takagi-Sugeno fuzzy system , 2013, Autom..

[26]  John R. Terry,et al.  Chaotic communication using generalized synchronization , 2001 .

[27]  Zhang Suo-chun,et al.  Controlling uncertain Lü system using backstepping design , 2003 .

[28]  Uchechukwu E. Vincent,et al.  Chaos control of 4D chaotic systems using recursive backstepping nonlinear controller , 2007 .

[29]  Z. Ge,et al.  The generalized synchronization of a Quantum-CNN chaotic oscillator with different order systems , 2008 .

[30]  Santo Banerjee,et al.  Chaotic Scenario in the Stenflo Equations , 2001 .

[31]  Cheng-Hsiung Yang Enhanced Symplectic Synchronization between Two Different Complex Chaotic Systems with Uncertain Parameters , 2013 .

[32]  Uchechukwu E. Vincent,et al.  Synchronization of identical and non-identical 4-D chaotic systems using active control , 2008 .

[33]  Jun-an Lu,et al.  Parameter identification and backstepping control of uncertain Lü system , 2003 .

[34]  Ivan Zelinka,et al.  Unknown inputs observer design for fuzzy systems with application to chaotic system reconstruction , 2013, Comput. Math. Appl..

[35]  Z. Ge,et al.  Synchronization of complex chaotic systems in series expansion form , 2007 .

[36]  Kaibiao Sun,et al.  Nonlinear and chaos control of a micro-electro-mechanical system by using second-order fast terminal sliding mode control , 2013, Commun. Nonlinear Sci. Numer. Simul..