Eigenvalue Computations Based on IDR

The induced dimension reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of a two-sided (block) Lanczos process with one right-hand side and several left-hand sides. The Hessenberg matrix of the OrthoRes version of this Lanczos process is explicitly obtained in terms of the scalars defining IDR by deflating the smoothing factors. The eigenvalues of this Hessenberg matrix are approximations of eigenvalues of the given matrix or operator.

[1]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[2]  E. Stiefel,et al.  Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .

[3]  R. Freund,et al.  A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .

[4]  M. Gutknecht The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .

[5]  Gerard L. G. Sleijpen,et al.  Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..

[6]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[7]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[8]  Y. Saad Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .

[9]  Ronald B. Morgan,et al.  Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides , 2008, SIAM J. Sci. Comput..

[10]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[11]  Damian Loher Reliable nonsymmetric block Lanczos algorithms , 2006 .

[12]  Jens-Peter M. Zemke,et al.  IDR ( s ) and IDR ( s ) Eig in Parallel Computing , 2010 .

[13]  M. B. Van Gijzen,et al.  An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties , 2010 .

[14]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[15]  Peter Sonneveld,et al.  On the convergence behaviour of IDR(s) , 2010 .

[16]  Martin H. Gutknecht,et al.  Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.

[17]  Zhaojun Bai,et al.  Hermitian Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.

[18]  James Demmel,et al.  Non-Hermitian Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.

[19]  Valeria Simoncini,et al.  Interpreting IDR as a Petrov--Galerkin Method , 2010, SIAM J. Sci. Comput..

[20]  Martin B. van Gijzen,et al.  Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.

[21]  Maria Teresa Vespucci,et al.  Krylov Solvers for Linear Algebraic Systems: Krylov Solvers , 2004 .

[22]  Roland W. Freund,et al.  A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..

[23]  Masaaki Sugihara,et al.  GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials , 2010, J. Comput. Appl. Math..

[24]  M. Gutknecht IDR Explained , 2008 .

[25]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[28]  Tony F. Chan,et al.  ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..

[29]  Daniel Skoogh,et al.  Rational Krylov Algorithms for Eigenvalue Computation and Model Reduction , 1998, PARA.

[30]  Martin H. Gutknecht,et al.  Stationary and almost stationary iterative (k, l)-step methods for linear and nonlinear systems of equations , 1989 .

[31]  Martin B. van Gijzen,et al.  IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..

[32]  Martin H. Gutknecht,et al.  Variations of Zhang's Lanczos-type product method , 2002 .

[33]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[34]  David W. Lewis,et al.  Matrix theory , 1991 .

[35]  Peter Sonneveld,et al.  On the Convergence Behavior of IDR(s) and Related Methods , 2012, SIAM J. Sci. Comput..

[36]  J. Zemke (Hessenberg) eigenvalue-eigenmatrix relations , 2006 .

[37]  P. Wesseling,et al.  Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .

[39]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[40]  Gerard L. G. Sleijpen,et al.  Bi-CGSTAB as an induced dimension reduction method , 2010 .

[41]  Daniel Boley,et al.  Transpose-free multiple Lanczos and its application in Padé approximation , 2005 .

[42]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[43]  Masaaki Sugihara,et al.  IDR(s) with Higher-Order Stabilization Polynomials , 2009 .

[44]  J. Zemke Abstract perturbed Krylov methods , 2007 .

[45]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[46]  Man-Chung Yeung,et al.  ML(n)BiCGStab: Reformulation, Analysis and Implementation , 2010, ArXiv.

[47]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[48]  G. Fairweather On the Eigenvalues and Eigenvectors of a Class of Hessenberg Matrices , 1971 .

[49]  Shao-Liang Zhang,et al.  GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..

[50]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .