Eigenvalue Computations Based on IDR
暂无分享,去创建一个
[1] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[2] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[3] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[4] M. Gutknecht. The Unsymmetric Lanczos Algorithms And Their Relations To Pad ' E Approximation, Continued Fractions , 1990 .
[5] Gerard L. G. Sleijpen,et al. Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..
[6] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[7] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[8] Y. Saad. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices , 1980 .
[9] Ronald B. Morgan,et al. Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides , 2008, SIAM J. Sci. Comput..
[10] J. Schur,et al. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .
[11] Damian Loher. Reliable nonsymmetric block Lanczos algorithms , 2006 .
[12] Jens-Peter M. Zemke,et al. IDR ( s ) and IDR ( s ) Eig in Parallel Computing , 2010 .
[13] M. B. Van Gijzen,et al. An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties , 2010 .
[14] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[15] Peter Sonneveld,et al. On the convergence behaviour of IDR(s) , 2010 .
[16] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[17] Zhaojun Bai,et al. Hermitian Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.
[18] James Demmel,et al. Non-Hermitian Eigenvalue Problems , 2000, Templates for the Solution of Algebraic Eigenvalue Problems.
[19] Valeria Simoncini,et al. Interpreting IDR as a Petrov--Galerkin Method , 2010, SIAM J. Sci. Comput..
[20] Martin B. van Gijzen,et al. Algorithm 913: An elegant IDR(s) variant that efficiently exploits biorthogonality properties , 2011, TOMS.
[21] Maria Teresa Vespucci,et al. Krylov Solvers for Linear Algebraic Systems: Krylov Solvers , 2004 .
[22] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[23] Masaaki Sugihara,et al. GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials , 2010, J. Comput. Appl. Math..
[24] M. Gutknecht. IDR Explained , 2008 .
[25] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[26] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[27] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[28] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[29] Daniel Skoogh,et al. Rational Krylov Algorithms for Eigenvalue Computation and Model Reduction , 1998, PARA.
[30] Martin H. Gutknecht,et al. Stationary and almost stationary iterative (k, l)-step methods for linear and nonlinear systems of equations , 1989 .
[31] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[32] Martin H. Gutknecht,et al. Variations of Zhang's Lanczos-type product method , 2002 .
[33] Fuzhen Zhang. The Schur complement and its applications , 2005 .
[34] David W. Lewis,et al. Matrix theory , 1991 .
[35] Peter Sonneveld,et al. On the Convergence Behavior of IDR(s) and Related Methods , 2012, SIAM J. Sci. Comput..
[36] J. Zemke. (Hessenberg) eigenvalue-eigenmatrix relations , 2006 .
[37] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[39] Alston S. Householder,et al. The Theory of Matrices in Numerical Analysis , 1964 .
[40] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[41] Daniel Boley,et al. Transpose-free multiple Lanczos and its application in Padé approximation , 2005 .
[42] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[43] Masaaki Sugihara,et al. IDR(s) with Higher-Order Stabilization Polynomials , 2009 .
[44] J. Zemke. Abstract perturbed Krylov methods , 2007 .
[45] T. Manteuffel,et al. A taxonomy for conjugate gradient methods , 1990 .
[46] Man-Chung Yeung,et al. ML(n)BiCGStab: Reformulation, Analysis and Implementation , 2010, ArXiv.
[47] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[48] G. Fairweather. On the Eigenvalues and Eigenvectors of a Class of Hessenberg Matrices , 1971 .
[49] Shao-Liang Zhang,et al. GPBi-CG: Generalized Product-type Methods Based on Bi-CG for Solving Nonsymmetric Linear Systems , 1997, SIAM J. Sci. Comput..
[50] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .