Experimental absolute electron impact ionization cross-sections of Cl2

We measured absolute partial cross-sections for the formation of Cl2+, Cl22+, Cl+ and Cl2+ ions following electron impact on molecular chlorine (Cl2) from threshold to 900 eV using a time-of-flight mass spectrometer. The ion spectrum at all impact energies is dominated by the singly charged ions with maximum cross-section values of 4.6 × 10−16 cm2 for Cl2+ at 32 eV and 4.0 × 10−16 cm2 for Cl+ at 70 eV. The cross-sections for the formation of the doubly charged ions are more than one order of magnitude lower. Double ionization processes account for about 6% of the total ion yield at 70 eV. The absolute total ionization cross-section of Cl2 was obtained as the sum of all measured partial ionization cross-sections. To the extent possible, a comparison of our results with other available measured and calculated data is made.

[1]  S. J. Pearton,et al.  Effect of Inert Gas Additive Species on Cl(2) High Density Plasma Etching of Compound Semiconductors: Part II. InP, InSb, InGaP and InGaAs , 1998 .

[2]  D. Graves,et al.  Effect of neutral transport on the etch product lifecycle during plasma etching of silicon in chlorine gas , 2003 .

[3]  M. V. Malyshev,et al.  Diagnostic studies of aluminum etching in an inductively coupled plasma system: Determination of electron temperatures and connections to plasma-induced damage , 2000 .

[4]  M. Vasile,et al.  Electron impact ionization cross sections of F2 and Cl2 , 1981 .

[5]  K. Becker,et al.  Absolute total and partial electron ionization cross sections of C2F6 , 2002 .

[6]  J. Samson,et al.  The photoionization cross sections of molecular chlorine , 1987 .

[7]  Eun Seong Lee,et al.  Temperature-dependent Cl2/Ar plasma etching of bulk single-crystal ZnO , 2003 .

[8]  V. M. Donnelly,et al.  Composition of trench sidewalls and bottoms for SiO2-masked Si(100) etched in Cl2 plasmas , 2000 .

[9]  S. Tachi Impact of plasma processing on integrated circuit technology migration: From 1 μm to 100 nm and beyond , 2003 .

[10]  L. Christophorou,et al.  Electron Interactions With Cl2 , 1999 .

[11]  S. Pal,et al.  Electron impact ionization of the Cl2 molecule , 2003 .

[12]  K. Becker,et al.  Absolute total and partial cross sections for the electron impact ionization of tetrafluorosilane (SiF4) , 2001 .

[13]  M. Kurepa,et al.  Electron-chlorine molecule total ionisation and electron attachment cross sections , 1978 .

[14]  V. M. Donnelly,et al.  Etching of high-k dielectric Zr1−xAlxOy films in chlorine-containing plasmas , 2001 .

[15]  L. Christophorou,et al.  Electron Interactions with Cl2, CCl2F2, BCl3, and SF6 , 2004 .

[16]  K. Becker,et al.  Measurements of absolute total and partial cross sections for the electron ionization of tungsten hexafluoride (WF6) , 2004 .

[17]  K. Becker,et al.  Absolute total and partial cross sections for the electron impact ionization of diborane (B2H6) , 2003 .

[18]  E. Aydil,et al.  Relation between the ion flux, gas phase composition, and wall conditions in chlorine plasma etching of silicon , 2003 .

[19]  P. Calandra,et al.  Electron-impact ionization of the chlorine molecule , 2000 .

[20]  S. Pearton,et al.  Effect of inert gas additive species on Cl 2 high density plasma etching of compound semiconductors , 1999 .

[21]  B. Lindsay,et al.  Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases , 2002 .

[22]  H. Temkin,et al.  Plasma etching of AlN/AlGaInN superlattices for device fabrication , 2002 .