Superconductor Amoeba-Inspired Problem Solvers for Combinatorial Optimization

Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic family; the energy dissipation of an AQFP gate can be arbitrarily reduced through adiabatic switching. In addition to high energy efficiency, AQFP logic has the advantage that it can easily introduce stochastic processes by exploiting naturally occurring thermal fluctuations. In this paper, we propose using AQFP logic to implement an amoeba-inspired problem solver (APS), which is a stochastic local search method to explore solutions to combinatorial optimization problems such as the Boolean satisfiability problem (SAT). We designed a superconductor amoeba-inspired problem solver (SAPS) using AQFP logic, which finds solutions to a simple logical constraint satisfaction problem in the manner of APS, and fabricated it using a Nb integrated circuit fabrication process. Experimental results showed that the probability distribution of the stochastic processes in AQFP logic can be

[1]  K. Likharev,et al.  Dynamics of some single flux quantum devices: I. Parametric quantron , 1977 .

[2]  O A Mukhanov,et al.  Energy-Efficient Single Flux Quantum Technology , 2011, IEEE Transactions on Applied Superconductivity.

[3]  Kazuyuki Aihara,et al.  Amoeba-based neurocomputing with chaotic dynamics , 2007, CACM.

[4]  S. Tahara,et al.  A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield , 1995, IEEE Transactions on Applied Superconductivity.

[5]  Anna Y. Herr,et al.  Ultra-low-power superconductor logic , 2011, 1103.4269.

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  M. Manheimer,et al.  Cryogenic Computing Complexity Program: Phase 1 Introduction , 2015, IEEE Transactions on Applied Superconductivity.

[8]  Brian R. Gaines,et al.  Stochastic Computing Systems , 1969 .

[9]  Motoichi Ohtsu,et al.  Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[10]  Naoki Takeuchi,et al.  Thermodynamic study of energy dissipation in adiabatic superconductor logic , 2015 .

[11]  Naoki Takeuchi,et al.  Design and Implementation of a 16-Word by 1-Bit Register File Using Adiabatic Quantum Flux Parametron Logic , 2017, IEEE Transactions on Applied Superconductivity.

[12]  Naoki Takeuchi,et al.  A Circuit-Level Amoeba-Inspired SAT Solver , 2020, IEEE Transactions on Circuits and Systems II: Express Briefs.

[13]  Seiya Kasai,et al.  Amoeba-inspired computing architecture implemented using charge dynamics in parallel capacitance network , 2013 .

[14]  Naoki Takeuchi,et al.  Synthesis Flow for Cell-Based Adiabatic Quantum-Flux-Parametron Structural Circuit Generation With HDL Back-End Verification , 2017, IEEE Transactions on Applied Superconductivity.

[15]  H. Nishimori,et al.  Quantum annealing in the transverse Ising model , 1998, cond-mat/9804280.

[16]  Theodore Van Duzer,et al.  Superconductor Digital Electronics Past, Present, and Future , 2008, IEICE Trans. Electron..

[17]  Rolf Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[18]  Y. Wada,et al.  Quantum flux parametron: a single quantum flux device for Josephson supercomputer , 1991, IEEE Transactions on Applied Superconductivity.

[19]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[20]  M. Gouker,et al.  Advanced Fabrication Processes for Superconducting Very Large-Scale Integrated Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[21]  Naoki Takeuchi,et al.  An adiabatic quantum flux parametron as an ultra-low-power logic device , 2013 .

[22]  Mark W. Johnson,et al.  Superconducting Computing in Large-Scale Hybrid Systems , 2015, Computer.

[23]  Masashi Aono,et al.  Amoeba-Inspired Heuristic Search Dynamics for Exploring Chemical Reaction Paths , 2015, Origins of Life and Evolution of Biospheres.

[24]  V. Semenov,et al.  RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems , 1991, IEEE Transactions on Applied Superconductivity.

[25]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[26]  I. Parametric Quantron DYNAMICS OF SOME SINGLE FLUX QUANTUM DEVICES , 1977 .

[27]  Hiroyuki Mizuno,et al.  A 20k-Spin Ising Chip to Solve Combinatorial Optimization Problems With CMOS Annealing , 2016, IEEE Journal of Solid-State Circuits.

[28]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[29]  Y. Yamanashi,et al.  A single-flux-quantum logic prototype microprocessor , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[30]  N. Takeuchi,et al.  Minimum energy dissipation required for a logically irreversible operation. , 2018, Physical review. E.

[31]  T. Sagawa,et al.  Thermodynamics of information , 2015, Nature Physics.

[32]  Kazuyoshi Takagi,et al.  Design and Demonstration of an 8-bit Bit-Serial RSFQ Microprocessor: CORE e4 , 2016, IEEE Transactions on Applied Superconductivity.

[33]  Naoki Takeuchi,et al.  Adiabatic quantum-flux-parametron cell library adopting minimalist design , 2015 .

[34]  Naoki Takeuchi,et al.  Majority-Logic-Optimized Parallel Prefix Carry Look-Ahead Adder Families Using Adiabatic Quantum-Flux-Parametron Logic , 2017, IEEE Transactions on Applied Superconductivity.

[35]  M. Naruse,et al.  Amoeba-inspired nanoarchitectonic computing implemented using electrical Brownian ratchets , 2015, Nanotechnology.

[36]  Masato Ito,et al.  18-GHz, 4.0-aJ/bit Operation of Ultra-Low-Energy Rapid Single-Flux-Quantum Shift Registers , 2012 .

[37]  Naoki Takeuchi,et al.  Adiabatic quantum-flux-parametron cell library designed using a 10 kA cm−2 niobium fabrication process , 2017 .

[38]  J. G. Koller,et al.  Adiabatic Switching, Low Energy Computing, And The Physics Of Storing And Erasing Information , 1992, Workshop on Physics and Computation.

[39]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.