Improved Inapproximability Results for the Shortest Superstring and Related Problems

We develop a new method for proving explicit approximation lower bounds for the Shortest Superstring problem, the Maximum Compression problem, the Maximum Asymmetric TSP problem, the (1, 2)--ATSP problem and the (1, 2)--TSP problem improving on the best known approximation lower bounds for those problems.

[1]  James A. Storer,et al.  Data Compression: Methods and Theory , 1987 .

[2]  Karpinski Marek,et al.  Efficient Amplifiers and Bounded Degree Optimization , 2001 .

[3]  Marcin Mucha,et al.  Lyndon Words and Short Superstrings , 2012, SODA.

[4]  Virginia Vassilevska Williams Explicit Inapproximability Bounds for the Shortest Superstring Problem , 2005, MFCS.

[5]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[6]  Marek Karpinski,et al.  On Approximation Lower Bounds for TSP with Bounded Metrics , 2012, Electron. Colloquium Comput. Complex..

[7]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[8]  Ming Li,et al.  Towards a DNA sequencing theory (learning a string) , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[9]  Marek Karpinski,et al.  TSP with bounded metrics , 2006, J. Comput. Syst. Sci..

[10]  Marek Karpinski,et al.  Approximating Bounded Degree Instances of NP-Hard Problems , 2001, FCT.

[11]  Marek Karpinski,et al.  Improved Approximation Lower Bounds on Small Occurrence Optimization , 2003, Electron. Colloquium Comput. Complex..

[12]  Marek Karpinski,et al.  8 = 7-Approximation Algorithm for (1,2)-TSP (cid:3) (Extended Version) , 2006 .

[13]  Sundar Vishwanathan,et al.  An Approximation Algorithm for the Asymmetric Travelling Salesman Problem with Distances One and Two , 1992, Inf. Process. Lett..

[14]  Markus Bläser,et al.  A 3/4-Approximation Algorithm for Maximum ATSP with Weights Zero and One , 2004, APPROX-RANDOM.

[15]  Luca Trevisan,et al.  When Hamming Meets Euclid: The Approximability of Geometric TSP and Steiner Tree , 2000, SIAM J. Comput..

[16]  Amin Saberi,et al.  An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem , 2010, SODA '10.

[17]  P. Berman,et al.  On Some Tighter Inapproximability Results , 1998, Electron. Colloquium Comput. Complex..

[18]  Michael Lampis Improved Inapproximability for TSP , 2012, APPROX-RANDOM.

[19]  Marek Karpinski,et al.  On Some Tighter Inapproximability Results (Extended Abstract) , 1999, ICALP.

[20]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[21]  Santosh S. Vempala,et al.  On The Approximability Of The Traveling Salesman Problem , 2006, Comb..

[22]  Marek Karpinski,et al.  Efficient Amplifiers and Bounded Degree Optimization , 2001, Electron. Colloquium Comput. Complex..

[23]  Moshe Lewenstein,et al.  Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs , 2005, JACM.

[24]  Khaled M. Elbassioni,et al.  Simpler Approximation of the Maximum Asymmetric Traveling Salesman Problem , 2012, STACS.

[25]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.