MULTIPLE TIME SCALE DYNAMICS WITH TWO FAST VARIABLES AND ONE SLOW VARIABLE
暂无分享,去创建一个
[1] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[2] C. Rocsoreanu,et al. The FitzHugh-Nagumo Model: Bifurcation and Dynamics , 2010 .
[3] John Guckenheimer,et al. Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .
[4] B. Deng. The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations , 1991 .
[5] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[6] Andreas Griewank,et al. ODE Solving via Automatic Differentiation and Rational Prediction , 1996 .
[7] D. Aronson,et al. Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .
[8] Peter Szmolyan,et al. Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .
[9] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[10] L. Peletier,et al. Nonlinear diffusion in population genetics , 1977 .
[11] Gert Sabidussi,et al. Normal Forms, Bifurcations and Finiteness Problems in Differential Equations , 2004 .
[12] Michael R. Osborne,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[13] F. Diener,et al. Nonstandard Analysis in Practice , 1995 .
[14] Christopher K. R. T. Jones,et al. A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .
[15] John A. Feroe,et al. Double Impulse Solutions in Nerve Axon Equations , 1982 .
[16] Freddy Dumortier,et al. Canard Cycles and Center Manifolds , 1996 .
[17] John Guckenheimer,et al. Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.
[18] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[19] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[20] Robert E. O'Malley,et al. Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .
[21] S. Yoshizawa,et al. An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.
[22] S. Hastings. SOME MATHEMATICAL PROBLEMS FROM NEUROBIOLOGY , 1975 .
[23] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[24] G. Carpenter. A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .
[25] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[26] N. K. Rozov,et al. Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .
[27] Kenneth J. Palmer,et al. Exponential dichotomies and transversal homoclinic points , 1984 .
[28] S. Chow,et al. Normal Forms and Bifurcation of Planar Vector Fields , 1994 .
[29] John Guckenheimer,et al. Bifurcations of relaxation oscillations , 2004 .
[30] David Terman,et al. Uniqueness and stability of periodic bursting solutions , 1999 .
[31] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[32] H. McKean. Nagumo's equation , 1970 .
[33] J. Grasman. Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .
[34] John Guckenheimer,et al. Bifurcation and degenerate decomposition in multiple time scale dynamical systems , 2002 .
[35] Johan Grasman,et al. Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.
[36] W. Kyner. Invariant Manifolds , 1961 .
[37] R. FitzHugh. Mathematical models of threshold phenomena in the nerve membrane , 1955 .
[38] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[39] N. Kopell,et al. Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .
[40] J. Guckenheimer,et al. HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.
[41] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[42] A. B. Vasil’eva. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN PROBLEMS INVOLVING NON-LINEAR DIFFERENTIAL EQUATIONS CONTAINING A?SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVES , 1963 .
[43] B. van der Pol,et al. The Nonlinear Theory of Electric Oscillations , 1934, Proceedings of the Institute of Radio Engineers.
[44] M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .
[45] John Guckenheimer,et al. Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..
[46] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[47] Horacio G. Rotstein,et al. Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..
[48] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[49] David Terman,et al. Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .
[50] John Guckenheimer,et al. Global bifurcations of periodic orbits in the forced Van der Pol equation , 2001 .
[51] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[52] B. Sandstede,et al. Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .
[53] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[54] G. Flores. Stability analysis for the slow traveling pulse of the Fitzhugh-Nagumo system , 1991 .
[55] L. Perko. Differential Equations and Dynamical Systems , 1991 .
[56] C. Bender,et al. Matched Asymptotic Expansions: Ideas and Techniques , 1988 .
[57] Lawrence F. Shampine,et al. Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .
[58] L Glass,et al. Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.
[59] Mario di Bernardo,et al. Nonlinear Dynamics and Chaos : Where do we go from here? , 2002 .
[60] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[61] Edgar Knobloch,et al. Unfolding a Tangent Equilibrium-to-Periodic Heteroclinic Cycle , 2009, SIAM J. Appl. Dyn. Syst..
[62] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[63] B. Braaksma,et al. Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .
[64] Wiktor Eckhaus,et al. Relaxation oscillations including a standard chase on French ducks , 1983 .
[65] P. Brunovský. TRACKING INVARIANT MANIFOLDS WITHOUT DIFFERENTIAL FORMS , 1999 .
[66] Jozsi Z. Jalics,et al. A novel canard-based mechanism for mixed-mode oscillations in a neuronal model , 2008, 0804.0829.
[67] P. Szmolyan,et al. Canards in R3 , 2001 .
[68] Peter Szmolyan,et al. Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..
[69] M. Krupa,et al. Relaxation Oscillation and Canard Explosion , 2001 .
[70] Peter Szmolyan,et al. Transversal heteroclinic and homoclinic orbits in singular perturbation problems , 1991 .
[71] Pierre Gaspard,et al. Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .
[72] Christopher K. R. T. Jones,et al. Tracking invariant manifolds up to exponentially small errors , 1996 .
[73] Marc Diener,et al. The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .
[74] Christopher Jones,et al. Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .
[75] N. Kopell,et al. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.
[76] Christian Kuehn,et al. From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.
[77] S. Baer,et al. Sungular hopf bifurcation to relaxation oscillations , 1986 .
[78] S. Hastings. ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .
[79] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[80] Bernd Krauskopf,et al. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.
[81] C. D. Boor,et al. Collocation at Gaussian Points , 1973 .
[82] Nancy Kopell,et al. Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..
[83] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[84] John Guckenheimer,et al. Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..
[85] Peter Szmolyan,et al. Extending slow manifolds near transcritical and pitchfork singularities , 2001 .
[86] R. Bowen. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .
[87] J. Boissonade,et al. Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system , 1980 .
[88] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[89] Christopher K. R. T. Jones,et al. Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .
[90] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[91] É. Benoît,et al. Chasse au canard (première partie) , 1981 .
[92] Freddy Dumortier,et al. Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .