MULTIPLE TIME SCALE DYNAMICS WITH TWO FAST VARIABLES AND ONE SLOW VARIABLE

[1]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[2]  C. Rocsoreanu,et al.  The FitzHugh-Nagumo Model: Bifurcation and Dynamics , 2010 .

[3]  John Guckenheimer,et al.  Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .

[4]  B. Deng The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations , 1991 .

[5]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[6]  Andreas Griewank,et al.  ODE Solving via Automatic Differentiation and Rational Prediction , 1996 .

[7]  D. Aronson,et al.  Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation , 1975 .

[8]  Peter Szmolyan,et al.  Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .

[9]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[10]  L. Peletier,et al.  Nonlinear diffusion in population genetics , 1977 .

[11]  Gert Sabidussi,et al.  Normal Forms, Bifurcations and Finiteness Problems in Differential Equations , 2004 .

[12]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[13]  F. Diener,et al.  Nonstandard Analysis in Practice , 1995 .

[14]  Christopher K. R. T. Jones,et al.  A Primer on the Exchange Lemma for Fast-Slow Systems , 2001 .

[15]  John A. Feroe,et al.  Double Impulse Solutions in Nerve Axon Equations , 1982 .

[16]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .

[17]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[18]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[19]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[20]  Robert E. O'Malley,et al.  Analyzing Multiscale Phenomena Using Singular Perturbation Methods , 1999 .

[21]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[22]  S. Hastings SOME MATHEMATICAL PROBLEMS FROM NEUROBIOLOGY , 1975 .

[23]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[24]  G. Carpenter A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .

[25]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[26]  N. K. Rozov,et al.  Differential Equations with Small Parameters and Relaxation Oscillations , 1980 .

[27]  Kenneth J. Palmer,et al.  Exponential dichotomies and transversal homoclinic points , 1984 .

[28]  S. Chow,et al.  Normal Forms and Bifurcation of Planar Vector Fields , 1994 .

[29]  John Guckenheimer,et al.  Bifurcations of relaxation oscillations , 2004 .

[30]  David Terman,et al.  Uniqueness and stability of periodic bursting solutions , 1999 .

[31]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[32]  H. McKean Nagumo's equation , 1970 .

[33]  J. Grasman Asymptotic Methods for Relaxation Oscillations and Applications , 1987 .

[34]  John Guckenheimer,et al.  Bifurcation and degenerate decomposition in multiple time scale dynamical systems , 2002 .

[35]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[36]  W. Kyner Invariant Manifolds , 1961 .

[37]  R. FitzHugh Mathematical models of threshold phenomena in the nerve membrane , 1955 .

[38]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[39]  N. Kopell,et al.  Construction of the Fitzhugh-Nagumo Pulse Using Differential Forms , 1991 .

[40]  J. Guckenheimer,et al.  HOMOCLINIC ORBITS OF THE FITZHUGH-NAGUMO EQUATION: THE SINGULAR-LIMIT , 2009, 1201.5901.

[41]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[42]  A. B. Vasil’eva ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO CERTAIN PROBLEMS INVOLVING NON-LINEAR DIFFERENTIAL EQUATIONS CONTAINING A?SMALL PARAMETER MULTIPLYING THE HIGHEST DERIVATIVES , 1963 .

[43]  B. van der Pol,et al.  The Nonlinear Theory of Electric Oscillations , 1934, Proceedings of the Institute of Radio Engineers.

[44]  M. Koper Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .

[45]  John Guckenheimer,et al.  Computing Periodic Orbits and their Bifurcations with Automatic Differentiation , 2000, SIAM J. Sci. Comput..

[46]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[47]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[48]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[49]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[50]  John Guckenheimer,et al.  Global bifurcations of periodic orbits in the forced Van der Pol equation , 2001 .

[51]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[52]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[53]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[54]  G. Flores Stability analysis for the slow traveling pulse of the Fitzhugh-Nagumo system , 1991 .

[55]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[56]  C. Bender,et al.  Matched Asymptotic Expansions: Ideas and Techniques , 1988 .

[57]  Lawrence F. Shampine,et al.  Solving Boundary Value Problems for Ordinary Differential Equations in M atlab with bvp 4 c , 2022 .

[58]  L Glass,et al.  Apparent discontinuities in the phase-resetting response of cardiac pacemakers. , 2004, Journal of theoretical biology.

[59]  Mario di Bernardo,et al.  Nonlinear Dynamics and Chaos : Where do we go from here? , 2002 .

[60]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[61]  Edgar Knobloch,et al.  Unfolding a Tangent Equilibrium-to-Periodic Heteroclinic Cycle , 2009, SIAM J. Appl. Dyn. Syst..

[62]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[63]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[64]  Wiktor Eckhaus,et al.  Relaxation oscillations including a standard chase on French ducks , 1983 .

[65]  P. Brunovský TRACKING INVARIANT MANIFOLDS WITHOUT DIFFERENTIAL FORMS , 1999 .

[66]  Jozsi Z. Jalics,et al.  A novel canard-based mechanism for mixed-mode oscillations in a neuronal model , 2008, 0804.0829.

[67]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[68]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[69]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[70]  Peter Szmolyan,et al.  Transversal heteroclinic and homoclinic orbits in singular perturbation problems , 1991 .

[71]  Pierre Gaspard,et al.  Complexity in the bifurcation structure of homoclinic loops to a saddle-focus , 1997 .

[72]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds up to exponentially small errors , 1996 .

[73]  Marc Diener,et al.  The canard unchainedor how fast/slow dynamical systems bifurcate , 1984 .

[74]  Christopher Jones,et al.  Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .

[75]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[76]  Christian Kuehn,et al.  From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.

[77]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[78]  S. Hastings ON THE EXISTENCE OF HOMOCLINIC AND PERIODIC ORBITS FOR THE FITZHUGH-NAGUMO EQUATIONS , 1976 .

[79]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..

[80]  Bernd Krauskopf,et al.  Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.

[81]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[82]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[83]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[84]  John Guckenheimer,et al.  Homoclinic Orbits of the FitzHugh-Nagumo Equation: Bifurcations in the Full System , 2010, SIAM J. Appl. Dyn. Syst..

[85]  Peter Szmolyan,et al.  Extending slow manifolds near transcritical and pitchfork singularities , 2001 .

[86]  R. Bowen Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms , 1975 .

[87]  J. Boissonade,et al.  Transitions from bistability to limit cycle oscillations. Theoretical analysis and experimental evidence in an open chemical system , 1980 .

[88]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[89]  Christopher K. R. T. Jones,et al.  Tracking invariant manifolds with di erential forms in singularly per-turbed systems , 1994 .

[90]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[91]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[92]  Freddy Dumortier,et al.  Techniques in the Theory of Local Bifurcations: Blow-Up, Normal Forms, Nilpotent Bifurcations, Singular Perturbations , 1993 .