A fuzzy clustering-based niching approach to multimodal function optimization

This paper presents a new method, which combines sharing and a fuzzy clustering technique to improve the performance of genetic algorithms in multimodal function optimization. This approach permits some limitations of the traditional sharing scheme to be overcome. Without using any prior information, it allows both location and maintenance of niches. Computer simulations show good performance for several multimodal test functions including a deceptive problem.

[1]  Alain Pétrowski,et al.  A New Selection Operator Dedicated to Speciation , 1997, ICGA.

[2]  Alan S. Perelson,et al.  Searching for Diverse, Cooperative Populations with Genetic Algorithms , 1993, Evolutionary Computation.

[3]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[4]  Jeffrey Horn,et al.  The nature of niching: genetic algorithms and the evolution of optimal, cooperative populations , 1997 .

[5]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[6]  Bull,et al.  An Overview of Genetic Algorithms: Part 2, Research Topics , 1993 .

[7]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[10]  Bruno Sareni,et al.  Fitness sharing and niching methods revisited , 1998, IEEE Trans. Evol. Comput..

[11]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[12]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[13]  J. Watson A Performance Assessment of Modern Niching Methods for Parameter Optimization Problems , 1999 .

[14]  Stephanie Forrest,et al.  Immunity by design: an artificial immune system , 1999 .

[15]  Georges R. Harik,et al.  Finding Multimodal Solutions Using Restricted Tournament Selection , 1995, ICGA.

[16]  Samir W. Mahfoud Crowding and Preselection Revisited , 1992, PPSN.

[17]  Melanie Mitchell,et al.  Genetic algorithms and artificial life , 1994 .

[18]  Francisco Herrera,et al.  Hierarchical distributed genetic algorithms , 1999 .

[19]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[20]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[21]  Michael J. Shaw,et al.  Genetic algorithms with dynamic niche sharing for multimodal function optimization , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[22]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[23]  D. Goldberg,et al.  Adaptive Niching via coevolutionary Sharing , 1997 .

[24]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[25]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[26]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[27]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[28]  Jacques Periaux,et al.  Genetic Algorithms in Engineering and Computer Science , 1996 .

[29]  Alan S. Perelson,et al.  Using Genetic Algorithms to Explore Pattern Recognition in the Immune System , 1993, Evolutionary Computation.

[30]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.