Quasi-perpendicular Shock Structure and Processes

[1]  T. Horbury,et al.  Wavelength and decay length of density overshoot structure in supercritical, collisionless bow shocks , 2005 .

[2]  T. Horbury,et al.  Electric field scales at quasi-perpendicular shocks , 2004 .

[3]  T. Horbury,et al.  On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster , 2004 .

[4]  T. Horbury,et al.  Density-transition scale at quasiperpendicular collisionless shocks. , 2003, Physical review letters.

[5]  Jacques Verron,et al.  Can we improve the representation of modeled ocean mixed layer by assimilating surface-only satellite-derived data? A case study for the tropical Pacific during the 1997-1998 El Nino , 2003 .

[6]  B. Lembège,et al.  Shock front nonstationarity of supercritical perpendicular shocks , 2003 .

[7]  T. Horbury,et al.  Bow shock motions observed with CLUSTER , 2003 .

[8]  Hiroshi Matsumoto,et al.  Reformation of perpendicular shocks: Hybrid simulations , 2002 .

[9]  J. Sauvaud,et al.  Bow shock specularly reflected ions in the presence of low-frequency electromagnetic waves: a case study , 2002 .

[10]  K. Glassmeier,et al.  Four‐point Cluster application of magnetic field analysis tools: The discontinuity analyzer , 2002 .

[11]  V. Formisano,et al.  Observation of the terrestrial bow shock in quasi‐electrostatic subshock regime , 2002 .

[12]  M. Dunlop,et al.  Four spacecraft measurements of the quasiperpendicular terrestrial bow shock: Orientation and motion , 2002 .

[13]  V. Krasnoselskikh,et al.  Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations , 2002 .

[14]  M. Dunlop,et al.  Cluster magnetic field observations of the bowshock: Orientation, motion and structure , 2001 .

[15]  T. Horbury,et al.  Observations of the spatial and temporal structure of field-aligned beam and gyrating ring distributions at the quasi-perpendicular bow shock with Cluster CIS , 2001 .

[16]  J. Giacalone,et al.  Cross-field diffusion of charged particles and the problem of ion injection and acceleration at quasi-perpendicular shocks , 2000 .

[17]  M. Gedalin,et al.  Role of overshoots in the formation of the downstream distribution of adiabatic electrons , 1999 .

[18]  C. Russell,et al.  Observations of a very thin collisionless shock , 1996 .

[19]  J. Slavin,et al.  Three‐dimensional position and shape of the bow shock and their variation with Alfvénic, sonic and magnetosonic Mach numbers and interplanetary magnetic field orientation , 1995 .

[20]  C. Russell,et al.  Determining the standoff distance of the bow shock: Mach number dependence and use of models , 1994 .

[21]  S. Fuselier,et al.  H+ and He2+ heating at the Earth's bow shock , 1994 .

[22]  Balikhin,et al.  New mechanism for electron heating in shocks. , 1993, Physical review letters.

[23]  B. Lembège,et al.  Nonstationarity of a two-dimensional quasiperpendicular supercritical collisionless shock by self-reformation , 1992 .

[24]  M. Thomsen,et al.  He2+ in field‐aligned beams: ISEE results , 1992 .

[25]  Viktor K. Decyk,et al.  Numerical studies of electron dynamics in oblique quasi-perpendicular collisionless shock waves , 1991 .

[26]  David G. Sibeck,et al.  Solar wind control of the magnetopause shape, location, and motion , 1991 .

[27]  T. Armstrong,et al.  Effect of magnetic overshoot on shock drift acceleration , 1991 .

[28]  H. Lühr,et al.  Ion thermalization in quasi-perpendicular shocks involving reflected ions , 1990 .

[29]  D. Burgess Alpha particles in field‐aligned beams upstream of the bow shock: Simulations , 1989 .

[30]  L. Kistler,et al.  Protons and alpha particles in field-aligned beams upstream of the bow shock , 1988 .

[31]  F. Mozer,et al.  Electric field measurements at subcritical, oblique bow shock crossings , 1987 .

[32]  R. Lepping,et al.  The Uranian bow shock - Voyager 2 inbound observations of a high Mach number shock , 1987 .

[33]  John M. Dawson,et al.  Self‐consistent study of a perpendicular collisionless and nonresistive shock , 1987 .

[34]  B. Lembège,et al.  Plasma heating through a supercritical oblique collisionless shock , 1987 .

[35]  D. Burgess Shock drift acceleration at low energies , 1987 .

[36]  J. Scudder,et al.  The resolved layer of a collisionless, high β, supercritical, quasi-perpendicular shock wave, 2. Dissipative fluid electrodynamics , 1986 .

[37]  K. Quest,et al.  Simulations of high Mach number perpendicular shocks with resistive electrons , 1986 .

[38]  J. Luhmann,et al.  Scatter-free propagation of low-energy protons in the magnetosheath: Implications for the production of field-aligned ion beams by nonthermal leakage , 1986 .

[39]  K. Quest,et al.  Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas. , 1985, Physical review letters.

[40]  S. Schwartz,et al.  The dynamics and upstream distributions of ions reflected at the Earth's bow shock , 1984 .

[41]  C. Russell,et al.  A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses. [in earth's bow shock , 1984 .

[42]  S. Schwartz,et al.  On the theoretical/observational comparison of field‐aligned ion beams in the Earth's foreshock , 1984 .

[43]  W. Feldman,et al.  Field aligned ion beams upstream of the Earth's bow shock: evidence for a magnetosheath source , 1983 .

[44]  S. Schwartz,et al.  Observational evidence on the origin of ions upstream of the Earth's bow shock , 1983 .

[45]  C. Russell,et al.  Evolution of ion distributions across the nearly perpendicular bow shock: Specularly and non‐specularly reflected‐gyrating ions , 1983 .

[46]  K. Papadopoulos,et al.  A source of the backstreaming ion beams in the foreshock region , 1983 .

[47]  S. Schwartz,et al.  Ions upstream of the Earth's bow shock: A theoretical comparison of alternative source populations , 1983 .

[48]  C. Russell,et al.  ISEE-1 and -2 observations of magnetic field strength overshoots in quasi-perpendicular bow shocks , 1982 .

[49]  V. Formisano Measurement of the potential drop across the Earth's collisionless bow shock , 1982 .

[50]  N. Sckopke,et al.  Observations of gyrating ions in the foot of the nearly perpendicular bow shock , 1982 .

[51]  Charles C. Goodrich,et al.  The structure of perpendicular bow shocks , 1982 .

[52]  C. Kennel,et al.  Escape of heated ions upstream of quasi-parallel shocks , 1982 .

[53]  V. Eselevich Shock-wave structure in collisionless plasmas from results of laboratory experiments , 1982 .

[54]  V. Formisano,et al.  Ion acoustic wave forms generated by ion‐ion streams at the Earth's bow shock , 1982 .

[55]  Charles C. Goodrich,et al.  Simulation of a perpendicular bow shock , 1981 .

[56]  C. Bonifazi,et al.  Reflected and diffuse ions backstreaming from the Earth's bow shock 1. Basic properties , 1981 .

[57]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[58]  N. Sckopke,et al.  Energization of solar wind ions by reflection from the Earth's bow shock , 1980 .

[59]  C. Russell,et al.  Magnetic field orientation and suprathermal ion streams in the earth's foreshock , 1980 .

[60]  W. Feldman,et al.  Deceleration of the solar wind upstream from the earth's bow shock and the origin of diffuse upstream ions , 1980 .

[61]  V. Formisano The three-dimensional shape of the bow shock , 1979 .

[62]  E. Greenstadt,et al.  Initial ISEE magnetometer results: Shock observation , 1979 .

[63]  T. Terasawa Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of fast mode , 1979 .

[64]  N. Sckopke,et al.  Observations of two distinct populations of bow shock ions in the upstream solar wind , 1978 .

[65]  N. Maynard,et al.  Early results from ISEE-1 electric field measurements , 1978 .

[66]  D. Morse A model for ion thermalization in the Earth's bow shock , 1976 .

[67]  C. Meng,et al.  30- to 100-keV protons upstream from the earth's bow shock , 1974 .

[68]  B. Sonnerup Acceleration of particles reflected at a shock front , 1969 .

[69]  J. Asbridge,et al.  Outward flow of protons from the Earth's bow shock , 1968 .

[70]  T. Skillman,et al.  OGO-A magnetic field observations , 1967 .

[71]  A. Summers,et al.  Hydromagnetic flow around the magnetosphere , 1966 .

[72]  I. Shinohara,et al.  Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing , 2003 .

[73]  M. Balikhin,et al.  The spatial sizes of electric and magnetic field gradients in a simulated shock , 1999 .

[74]  M. Dunlop,et al.  Observations of a very thin shock , 1999 .

[75]  S. Schwartz Shock and Discontinuity Normals, Mach Numbers, and Related Parameters , 1998 .

[76]  P. Daly,et al.  Analysis methods for multi-spacecraft data , 1998 .

[77]  A. Lazarus,et al.  Single spacecraft identification of the bow shock orientation and speed: A comparison between different methods , 1997 .

[78]  Per-Arne Lindqvist,et al.  THE ELECTRIC FIELD AND WAVE EXPERIMENT FOR THE CLUSTER MISSION , 1997 .

[79]  J. Scudder A review of the physics of electron heating at collisionless shocks , 1995 .

[80]  M. Balikhin,et al.  The scales in quasiperpendicular shocks , 1995 .

[81]  M. Balikhin,et al.  On the nature of low frequency turbulence in the foot of strong quasi-perpendicular shocks , 1991 .

[82]  C. Kennel,et al.  The role of whistler oscillations in the formation of the structure of high Mach number collisionless shock. , 1989 .

[83]  Z. Němeček,et al.  Ion distribution function dynamics near the strong shock front (Project Intershock) , 1986 .

[84]  Bruce T. Tsurutani,et al.  Collisionless shocks in the heliosphere: reviews of current research , 1985 .

[85]  O. Vaisberg,et al.  Relaxation of plasma at the shock front , 1984 .

[86]  D. Winske,et al.  Backstreaming ions from oblique earth bow shocks , 1983 .

[87]  W. Destler,et al.  Nonstationary behavior of collisionless shocks , 1972 .

[88]  V. Eselevich,et al.  ISOMAGNETIC DISCONTINUITY IN A COLLISONLESS SHOCK WAVE. , 1971 .