The Invisible Hand of Dynamic Market Pricing

Walrasian prices, if they exist, have the property that one can assign every buyer some bundle in her demand set, such that the resulting assignment will maximize social welfare. Unfortunately, this assumes carefully breaking ties amongst different bundles in the buyer demand set. Presumably, the shopkeeper cleverly convinces the buyer to break ties in a manner consistent with maximizing social welfare. Lacking such a shopkeeper, if buyers arrive sequentially and simply choose some arbitrary bundle in their demand set, the social welfare may be arbitrarily bad. In the context of matching markets, we show how to compute dynamic prices, based upon the current inventory, that guarantee that social welfare is maximized. Such prices are set without knowing the identity of the next buyer to arrive. We also show that this is impossible in general (e.g., for coverage valuations), but consider other scenarios where this can be done. We further extend our results to Bayesian and bounded rationality models.

[1]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[2]  V. Crawford,et al.  Job Matching with Heterogeneous Firms and Workers , 1981 .

[3]  Michal Feldman,et al.  Combinatorial Auctions via Posted Prices , 2014, SODA.

[4]  H. Leonard Elicitation of Honest Preferences for the Assignment of Individuals to Positions , 1983, Journal of Political Economy.

[5]  Shuchi Chawla,et al.  The power of randomness in bayesian optimal mechanism design , 2010, EC '10.

[6]  Justin Hsu,et al.  Do prices coordinate markets? , 2015, SECO.

[7]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[8]  Michal Feldman,et al.  Combinatorial Walrasian Equilibrium , 2016, SIAM J. Comput..

[9]  Léon Walras Éléments d'économie politique pure , 1889 .

[10]  Kazuo Murota,et al.  Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..

[11]  R. Allen,et al.  Economic theory , 2018, Integrative Governance.

[12]  Renato Paes Leme,et al.  Gross substitutability: An algorithmic survey , 2017, Games Econ. Behav..

[13]  G. Myles Journal of Economic Theory: J.-M. Grandmont, 1992, Transformations of the commodity space, behavioural heterogeneity, and the aggregation problem 57, 1-35 , 1993 .

[14]  Shuchi Chawla,et al.  Algorithmic pricing via virtual valuations , 2007, EC '07.

[15]  J. Potters,et al.  Verifying gross substitutability , 2002 .

[16]  B Léa Le marché en concurrence pure et parfaite : analyse de Léon Wa... , 2015 .

[17]  Jstor,et al.  Invention in the Industrial Research Laboratory , 1963, Journal of Political Economy.

[18]  Hanna Bäck Coalition Formation and the Inclusion of Green Parties in Swedish Local Government , 2001 .

[19]  Amos Fiat,et al.  Pricing Online Decisions: Beyond Auctions , 2015, SODA.

[20]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[21]  Léon Walras Éléments d'économie politique pure, ou, Théorie de la richesse sociale , 1976 .

[22]  Liad Blumrosen,et al.  Posted prices vs. negotiations: an asymptotic analysis , 2008, EC '08.

[23]  Shuchi Chawla,et al.  Multi-parameter mechanism design and sequential posted pricing , 2010, BQGT.

[24]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[25]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[26]  Renato Paes Leme,et al.  Computing Walrasian Equilibria: Fast Algorithms and Economic Insights , 2015, ArXiv.