Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations

We investigated the cathodic and anodic limits of six room-temperature ionic liquids (ILs) formed from a combination of two common cations, 1-butyl-3-methylimidazolium (BMIM) and N,N-propylmethylpyrrolidinium (P13), and three common anions, PF6, BF4, and bis(trifluoromethylsulfonyl)imide (TFSI), using an approach that combines molecular dynamics (MD) simulations and density functional theory (DFT) calculations. All interion interactions were taken into account by explicitly modeling the entire liquid structure using classical MD, followed by DFT computations of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies. The relative cathodic and anodic limits of BMIM PF6, BMIM BF4, BMIM TFSI, and P13 TFSI obtained from our approach are in fairly good agreement with existing experimental data. From our DFT calculations, we also obtained the cation- and anion-projected density of states (DOS), which provide information on the likely species contributing to reductiv...

[1]  William K. Smith,et al.  Guest Editorial: DL_POLY–applications to molecular simulation II , 2006 .

[2]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[3]  J. Tomasi,et al.  Ab initio study of ionic solutions by a polarizable continuum dielectric model , 1998 .

[4]  A. Lewandowski,et al.  Carbon–ionic liquid double-layer capacitors , 2004 .

[5]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[6]  Ray H. Baughman,et al.  Investigation of ionic liquids as electrolytes for carbon nanotube electrodes , 2004 .

[7]  M. Ue,et al.  Theoretical Studies on the Reductive Decompositions of Solvents and Additives for Lithium-Ion Batteries near Lithium Anodes , 2006 .

[8]  M. Ondrechen,et al.  The Intrinsic Anodic Stability of Several Anions Comprising Solvent‐Free Ionic Liquids , 1996 .

[9]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[10]  D. Macfarlane,et al.  Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids , 2006 .

[11]  S. Passerini,et al.  Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide , 2008 .

[12]  Gerbrand Ceder,et al.  THE LI INTERCALATION POTENTIAL OF LIMPO4 AND LIMSIO4 OLIVINES WITH M = FE, MN, CO, NI , 2004 .

[13]  J. W.,et al.  The Journal of Physical Chemistry , 1900, Nature.

[14]  A. Pádua,et al.  Modeling Ionic Liquids Using a Systematic All-Atom Force Field , 2004 .

[15]  C. Lagrost,et al.  Electrochemical reactivity in room-temperature ionic liquids. , 2008, Chemical reviews.

[16]  P. M. Rodger,et al.  DL_POLY: Application to molecular simulation , 2002 .

[17]  Vincenzo Barone,et al.  Time-dependent density functional theory for molecules in liquid solutions , 2001 .

[18]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[19]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[20]  A molecular dynamics computer simulation study of room-temperature ionic liquids. II. Equilibrium and nonequilibrium solvation dynamics. , 2005, The Journal of chemical physics.

[21]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[22]  G. Rignanese,et al.  Band offsets at the Si/SiO2 interface from many-body perturbation theory. , 2008, Physical review letters.

[23]  A. Pasquarello,et al.  Band offsets at semiconductor-oxide interfaces from hybrid density-functional calculations. , 2008, Physical review letters.

[24]  A. Lewandowski,et al.  Lithium-metal potential in Li+ containing ionic liquids , 2010 .

[25]  Journal of Chemical Physics , 1932, Nature.

[26]  K. Amine,et al.  Reduction Mechanisms of Ethylene, Propylene, and Vinylethylene Carbonates A Quantum Chemical Study , 2004 .

[27]  C. Reichardt Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes , 2005 .

[28]  Jacopo Tomasi,et al.  Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes , 1982 .

[29]  The electronic structure of liquid water within density-functional theory. , 2005, The Journal of chemical physics.

[30]  M. Schlüter,et al.  Density-Functional Theory of the Energy Gap , 1983 .

[31]  A. Lewandowski,et al.  Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K , 2003 .

[32]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[33]  V. Barone,et al.  A direct procedure for the evaluation of solvent effects in MC-SCF calculations , 1999 .

[34]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[35]  H. Weingärtner The Static Dielectric Constant of Ionic Liquids , 2006 .

[36]  H. Ngo,et al.  Thermal properties of imidazolium ionic liquids , 2000 .

[37]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[38]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[39]  M. Ue,et al.  Anodic Stability of Several Anions Examined by Ab Initio Molecular Orbital and Density Functional Theories , 2002 .

[40]  Mahn‐Soo Choi,et al.  Solvation in molecular ionic liquids , 2003 .

[41]  Jacopo Tomasi,et al.  Molecular properties in solution described with a continuum solvation model , 2002 .

[42]  B. Meyer,et al.  Schottky barriers at transition-metal/ SrTiO 3 ( 001 ) interfaces , 2009 .

[43]  C. Peters,et al.  Decomposition of ionic liquids in electrochemical processing , 2006 .

[44]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[45]  R. Compton,et al.  Electrochemistry in Room-Temperature Ionic Liquids: Potential Windows at Mercury Electrodes , 2009 .

[46]  A. Pádua,et al.  Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions , 2004 .

[47]  Jacopo Tomasi,et al.  Fast Evaluation of Geometries and Properties of Excited Molecules in Solution: A Tamm-Dancoff Model with Application to 4-Dimethylaminobenzonitrile , 2000 .

[48]  C. S. Wang,et al.  Density-functional theory of excitation spectra of semiconductors; application to Si , 1983 .

[49]  Jacopo Tomasi,et al.  Second-Order Møller-Plesset Analytical Derivatives for the Polarizable Continuum Model Using the Relaxed Density Approach , 1999 .

[50]  Giovanni Scalmani,et al.  New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution , 2002 .

[51]  Vincenzo Barone,et al.  Separation between fast and slow polarizations in continuum solvation models , 2000 .

[52]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[53]  Jacopo Tomasi,et al.  Geometry optimization of molecular structures in solution by the polarizable continuum model , 1998 .

[54]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[55]  Giovanni Scalmani,et al.  Polarizable dielectric model of solvation with inclusion of charge penetration effects , 2001 .

[56]  O. Borodin Polarizable force field development and molecular dynamics simulations of ionic liquids. , 2009, The journal of physical chemistry. B.

[57]  Michel Armand,et al.  Room temperature molten salts as lithium battery electrolyte , 2004 .

[58]  H. Sakaebe,et al.  Application of room temperature ionic liquids to Li batteries , 2007 .

[59]  S. A. Dodds,et al.  Chemical Physics , 1877, Nature.

[60]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[62]  R. Compton,et al.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids , 2008 .

[63]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[64]  Jacopo Tomasi,et al.  A new definition of cavities for the computation of solvation free energies by the polarizable continuum model , 1997 .

[65]  H. Matsumoto,et al.  Room temperature molten salts based on trialkylsulfonium cations and bis(trifluoromethylsulfonyl)imide , 2000 .

[66]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[67]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[68]  Bruno Scrosati,et al.  LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries , 2007 .

[69]  Patrik Johansson,et al.  Electronic structure calculations on lithium battery electrolyte salts. , 2007, Physical chemistry chemical physics : PCCP.

[70]  後藤 良造,et al.  速報誌 Chemistry Letters 創刊のその後 , 1974 .

[71]  Jacopo Tomasi,et al.  Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications , 1997 .

[72]  J. C. Bevington,et al.  Chemical Reviews , 1970, Nature.

[73]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[74]  October I Physical Review Letters , 2022 .

[75]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[76]  Vincenzo Barone,et al.  Solvent effect on vertical electronic transitions by the polarizable continuum model , 2000 .

[77]  Jacopo Tomasi,et al.  Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries , 1997 .

[78]  A molecular dynamics computer simulation study of room-temperature ionic liquids. I. Equilibrium solvation structure and free energetics. , 2005, The Journal of chemical physics.

[79]  J. Tomasi,et al.  Ab initio study of solvated molecules: A new implementation of the polarizable continuum model , 1996 .

[80]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[81]  S. Ong,et al.  Investigation of the Effect of Functional Group Substitutions on the Gas-Phase Electron Affinities and Ionization Energies of Room-Temperature Ionic Liquids Ions using Density Functional Theory , 2010 .

[82]  Chris D. Geddes,et al.  Physical Chemistry Chemical Physics , 2013 .

[83]  W Smith,et al.  DL_POLY_2.0: a general-purpose parallel molecular dynamics simulation package. , 1996, Journal of molecular graphics.

[84]  G. Ceder,et al.  Efficient band gap prediction for solids. , 2010, Physical review letters.

[85]  A. Kuwabara,et al.  Quantitative Evaluation of Electrochemical Potential Windows of Electrolytes for Electric Double-Layer Capacitors Using Ab Initio Calculations , 2010 .

[86]  J. Conboy,et al.  1-Alkyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide Water-Immiscible Ionic Liquids The Effect of Water on Electrochemical and Physical Properties , 2004 .

[87]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[88]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[89]  V. Koch,et al.  Nonaqueous electrolytes for electrochemical capacitors: Imidazolium cations and inorganic fluorides with organic carbonates , 1997 .

[90]  R. Compton,et al.  Extended electrochemical windows made accessible by room temperature ionic liquid/organic solvent electrolyte systems. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[91]  Gustavo E Scuseria,et al.  Efficient hybrid density functional calculations in solids: assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. , 2004, The Journal of chemical physics.

[92]  I. M. Kolthoff Zeitschrift für physikalische Chemie. , 1959 .

[93]  Byoungwoo Kang,et al.  High Rate Micron-Sized Ordered LiNi0.5Mn1.5O4 , 2010 .