A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients

We present a novel Material Point Method (MPM) discretization of surface tension forces that arise from spatially varying surface energies. These variations typically arise from surface energy dependence on temperature and/or concentration. Furthermore, since the surface energy is an interfacial property depending on the types of materials on either side of an interface, spatial variation is required for modeling the contact angle at the triple junction between a liquid, solid and surrounding air. Our discretization is based on the surface energy itself, rather than on the associated traction condition most commonly used for discretization with particle methods. Our energy based approach automatically captures surface gradients without the explicit need to resolve them as in traction condition based approaches. We include an implicit discretization of thermomechanical material coupling with a novel particle-based enforcement of Robin boundary conditions associated with convective heating. Lastly, we design a particle resampling approach needed to achieve perfect conservation of linear and angular momentum with Affine-Particle-In-Cell (APIC) [Jiang et al. 2015]. We show that our approach enables implicit time stepping for complex behaviors like the Marangoni effect and hydrophobicity/hydrophilicity. We demonstrate the robustness and utility of our method by simulating materials that exhibit highly diverse degrees of surface tension and thermomechanical effects, such as water, wine and wax.

[1]  Ronald Fedkiw,et al.  Codimensional surface tension flow on simplicial complexes , 2014, ACM Trans. Graph..

[2]  Huamin Wang,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Solving General Shallow Wave Equations on Surfaces , 2022 .

[3]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[4]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[5]  Yu Fang,et al.  AnisoMPM: animating anisotropic damage mechanics , 2020, ACM Trans. Graph..

[6]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[7]  D Langbein,et al.  Capillary Surfaces: Shape, Stability, Dynamics, in Particular Under Weightlessness. Tracts in Modern Physics, Vol 178 , 2002 .

[8]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[9]  Chenfanfu Jiang,et al.  Silly rubber , 2019, ACM Trans. Graph..

[10]  Ralph R. Martin,et al.  Versatile interactions at interfaces for SPH-based simulations , 2016, Symposium on Computer Animation.

[11]  Martin Rumpf,et al.  Functional Thin Films on Surfaces , 2015, IEEE Transactions on Visualization and Computer Graphics.

[12]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[13]  Mostafa Safdari Shadloo,et al.  A Smoothed Particle Hydrodynamics approach for thermo-capillary flows , 2018, Computers & Fluids.

[14]  Robert Bridson,et al.  A high‐order accurate particle‐in‐cell method , 2012 .

[15]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[16]  Huamin Wang,et al.  Enriching SPH simulation by approximate capillary waves , 2016, Symposium on Computer Animation.

[17]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[18]  L. Scriven,et al.  The Marangoni Effects , 1960, Nature.

[19]  P. Taylor,et al.  Physical chemistry of surfaces , 1991 .

[20]  Timo Aila,et al.  Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder , 2017, ACM Trans. Graph..

[21]  T. Zohdi,et al.  Particle-scale numerical modeling of thermo-mechanical phenomena for additive manufacturing using the material point method , 2020 .

[22]  Eitan Grinspun,et al.  Double bubbles sans toil and trouble , 2015, ACM Trans. Graph..

[23]  Eitan Grinspun,et al.  A multi-scale model for simulating liquid-fabric interactions , 2018, ACM Trans. Graph..

[24]  Paul Meakin,et al.  Modeling of surface tension and contact angles with smoothed particle hydrodynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Chenfanfu Jiang,et al.  Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping , 2020, ACM Trans. Graph..

[26]  Andreas Kolb,et al.  Evaporation and condensation of SPH-based fluids , 2017, Symposium on Computer Animation.

[27]  Aimin Hao,et al.  An efficient heat-based model for solid-liquid-gas phase transition and dynamic interaction , 2017, Graph. Model..

[28]  Eitan Grinspun,et al.  Discrete viscous sheets , 2012, ACM Trans. Graph..

[29]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[30]  Xuchen Han,et al.  A thermomechanical material point method for baking and cooking , 2019, ACM Trans. Graph..

[31]  Yi-Lu Chen,et al.  An extended cut-cell method for sub-grid liquids tracking with surface tension , 2020, ACM Trans. Graph..

[32]  A. Cassie,et al.  Wettability of porous surfaces , 1944 .

[33]  Chris Wojtan,et al.  A Practical Method for Animating Anisotropic Elastoplastic Materials , 2020, Comput. Graph. Forum.

[34]  Paolo Cignoni,et al.  Ieee Transactions on Visualization and Computer Graphics 1 Efficient and Flexible Sampling with Blue Noise Properties of Triangular Meshes , 2022 .

[35]  Markus H. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, ACM Trans. Graph..

[36]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[37]  Roberto F. Ausas,et al.  Variational formulations for surface tension, capillarity and wetting , 2011 .

[38]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[39]  Joseph Teran,et al.  An implicit updated lagrangian formulation for liquids with large surface energy , 2020, ACM Trans. Graph..

[40]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[41]  Afonso Paiva,et al.  Particle-based viscoplastic fluid/solid simulation , 2009, Comput. Aided Des..

[42]  Qiang Zhang,et al.  Simulation of multiple fluids with solid–liquid phase transition , 2012, Comput. Animat. Virtual Worlds.

[43]  Eitan Grinspun,et al.  Supplemental : A Multi-Scale Model for Simulating Liquid-Hair Interactions , 2017 .

[44]  R. H. Dettre,et al.  Contact Angle Hysteresis. III. Study of an Idealized Heterogeneous Surface , 1964 .

[45]  Eitan Grinspun,et al.  Surface-only liquids , 2016, ACM Trans. Graph..

[46]  Dinesh Manocha,et al.  A massively parallel and scalable multi-GPU material point method , 2020, ACM Trans. Graph..

[47]  Mingming Tong,et al.  An incompressible multi-phase smoothed particle hydrodynamics (SPH) method for modelling thermocapillary flow , 2014 .

[48]  Matthias Teschner,et al.  An implicit compressible SPH solver for snow simulation , 2020, ACM Trans. Graph..

[49]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[50]  M. Gross,et al.  Physics-inspired topology changes for thin fluid features , 2010, ACM Trans. Graph..

[51]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[52]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[53]  Sadashige Ishida,et al.  A model for soap film dynamics with evolving thickness , 2020, ACM Trans. Graph..

[54]  John C. Platt,et al.  Heating and melting deformable models , 1991, Comput. Animat. Virtual Worlds.

[55]  Mathieu Desbrun,et al.  Kinetic-Based Multiphase Flow Simulation , 2020, IEEE Transactions on Visualization and Computer Graphics.

[56]  Reiji Tsuruno,et al.  Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles , 2012, IEEE Transactions on Visualization and Computer Graphics.

[57]  A M C E James Thomson,et al.  XLII. On certain curious motions observable at the surfaces of wine and other alcoholic liquors , 1855 .

[58]  Ronald Fedkiw,et al.  Two-Way Coupled SPH and Particle Level Set Fluid Simulation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[59]  Yi Gu,et al.  Physics based boiling bubble simulation , 2016, SIGGRAPH Asia Technical Briefs.

[60]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[61]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[62]  M. Gross,et al.  A multiscale approach to mesh-based surface tension flows , 2010, SIGGRAPH 2010.

[63]  Matthias B. Hullin,et al.  Chemomechanical simulation of soap film flow on spherical bubbles , 2020, ACM Trans. Graph..

[64]  Ronald Fedkiw,et al.  A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension , 2015, J. Comput. Phys..

[65]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[66]  XLII , 2018, The Princess Casamassima.

[67]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[68]  Bo Zhu,et al.  Codimensional surface tension flow using moving-least-squares particles , 2020, ACM Trans. Graph..

[69]  Chen Li,et al.  Robust Gas Condensation Simulation with SPH based on Heat Transfer , 2017, PG.

[70]  Andrew M. Stuart,et al.  A First Course in Continuum Mechanics: Bibliography , 2008 .

[71]  Thomas Thundat,et al.  Microfluidic manipulation via Marangoni forces , 2004 .

[72]  Philip Dutré,et al.  An architecture for unified SPH simulations , 2009 .

[73]  Ralph R. Martin,et al.  A unified particle system framework for multi-phase, multi-material visual simulations , 2017, ACM Trans. Graph..

[74]  Shinji Ogaki,et al.  Arnold , 2018, ACM Trans. Graph..

[75]  Terence Desmond Blake,et al.  Contact-Angle Hysteresis , 1973 .

[76]  Alexey Stomakhin,et al.  Energetically consistent invertible elasticity , 2012, SCA '12.

[77]  Frédéric Gibou,et al.  Level-set simulations of soluble surfactant driven flows , 2017, J. Comput. Phys..

[78]  Xuchen Han,et al.  A material point method for thin shells with frictional contact , 2018, ACM Trans. Graph..

[79]  D. Venerus,et al.  Tears of wine: new insights on an old phenomenon , 2015, Scientific Reports.

[80]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[81]  C. Tropea,et al.  Outcomes from a drop impact on solid surfaces , 2001 .

[82]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[83]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[84]  Thomas Young,et al.  An Essay on the Cohesion of Fluids , 1800 .

[85]  James F. O'Brien,et al.  Simulating liquids and solid-liquid interactions with lagrangian meshes , 2013, TOGS.

[86]  Ming Gao,et al.  CD-MPM , 2019, ACM Trans. Graph..

[87]  Gretar Tryggvason,et al.  Thermocapillary interaction of two bubbles or drops , 2003 .

[88]  Wojciech Palubicki,et al.  Interactive wood combustion for botanical tree models , 2017, ACM Trans. Graph..

[89]  P. Eberhard,et al.  Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics , 2017 .

[90]  Mark Sussman,et al.  A Stable and Efficient Method for Treating Surface Tension in Incompressible Two-Phase Flow , 2009, SIAM J. Sci. Comput..

[91]  申瀅植 III. , 1889, Selected Poems.

[92]  Chenfanfu Jiang,et al.  Simulation and Visualization of Ductile Fracture with the Material Point Method , 2019, PACMCGIT.

[93]  Huamin Wang,et al.  Water drops on surfaces , 2005, ACM Trans. Graph..