Two-dimensional Dirac-line semimetals resistant to strong spin-orbit coupling.

[1]  Zu-Yan Xu,et al.  Spectroscopic evidence for the realization of a genuine topological nodal-line semimetal in LaSbTe , 2021, Physical Review B.

[2]  H. Weng,et al.  Diabolical touching point in the magnetic energy levels of topological nodal-line metals , 2020, Physical Review B.

[3]  D. Smirnov,et al.  Electronic correlations in nodal-line semimetals , 2020 .

[4]  Jinlong Yang,et al.  Creation of Dirac nodal line by extrinsic symmetry engineering. , 2020, Nano letters.

[5]  A. Cortijo,et al.  Many-body effects in nodal-line semimetals: Correction to the optical conductivity , 2019, Physical Review B.

[6]  A. Locatelli,et al.  Realization of Symmetry Enforced Two-Dimensional Dirac Fermions in Nonsymmorphic α-Bismuthene. , 2019, ACS nano.

[7]  X. Dai,et al.  Recent Progress in the Study of Topological Semimetals , 2018 .

[8]  S. Du,et al.  Epitaxial Growth of Honeycomb Monolayer CuSe with Dirac Nodal Line Fermions , 2018, Advanced materials.

[9]  Y. Liu,et al.  Hourglass Dirac chain metal in rhenium dioxide , 2017, Nature Communications.

[10]  E. J. Mele,et al.  Weyl and Dirac semimetals in three-dimensional solids , 2017, 1705.01111.

[11]  Cheng-Cheng Liu,et al.  Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si , 2016, Nature Communications.

[12]  X. Dai,et al.  Topological nodal line semimetals , 2016, 1609.05414.

[13]  Liang Fu,et al.  Topological nodal line semimetals with and without spin-orbital coupling , 2015, 1506.03449.

[14]  C. Kane,et al.  Dirac Semimetals in Two Dimensions. , 2015, Physical review letters.

[15]  T. Wehling,et al.  Dirac materials , 2014, 1405.5774.