Quantifying Absolute Protein Synthesis Rates Reveals Principles Underlying Allocation of Cellular Resources

[1]  Anushya Muruganujan,et al.  PortEco: a resource for exploring bacterial biology through high-throughput data and analysis tools , 2013, Nucleic Acids Res..

[2]  Rotem Sorek,et al.  Differential translation tunes uneven production of operon-encoded proteins. , 2013, Cell reports.

[3]  T. Hwa,et al.  Coordination of bacterial proteome with metabolism by cyclic AMP signalling , 2013, Nature.

[4]  A. Varshavsky,et al.  Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. , 2013, Molecular cell.

[5]  T. Silhavy,et al.  Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for β-barrel assembly in Escherichia coli , 2013, Proceedings of the National Academy of Sciences.

[6]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[7]  A. Amon,et al.  Aneuploidy causes proteotoxic stress in yeast. , 2012, Genes & development.

[8]  Marco Y. Hein,et al.  Decoding Human Cytomegalovirus , 2012, Science.

[9]  Adam Frost,et al.  A Ribosome-Bound Quality Control Complex Triggers Degradation of Nascent Peptides and Signals Translation Stress , 2012, Cell.

[10]  Peter D. Karp,et al.  EcoCyc: fusing model organism databases with systems biology , 2012, Nucleic Acids Res..

[11]  K. Gerdes,et al.  Bacterial persistence and toxin-antitoxin loci. , 2012, Annual review of microbiology.

[12]  K. Valgepea,et al.  Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. , 2012, Journal of proteomics.

[13]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[14]  M. Stead,et al.  RNAsnap™: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria , 2012, Nucleic acids research.

[15]  Johan Elf,et al.  The lac Repressor Displays Facilitated Diffusion in Living Cells , 2012, Science.

[16]  U. Sauer,et al.  Multidimensional Optimality of Microbial Metabolism , 2012, Science.

[17]  Gene-Wei Li,et al.  The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria , 2012, Nature.

[18]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[19]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[20]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[21]  M. Inouye,et al.  Toxin-antitoxin systems in bacteria and archaea. , 2011, Annual review of genetics.

[22]  Gene-Wei Li,et al.  Central dogma at the single-molecule level in living cells , 2011, Nature.

[23]  Yuval Hart,et al.  Robust control of nitrogen assimilation by a bifunctional enzyme in E. coli. , 2011, Molecular cell.

[24]  T. Hwa,et al.  Interdependence of Cell Growth and Gene Expression: Origins and Consequences , 2010, Science.

[25]  Bernd Bukau,et al.  Cellular strategies for controlling protein aggregation , 2010, Nature Reviews Molecular Cell Biology.

[26]  Paul J. Choi,et al.  Quantifying E. coli Proteome and Transcriptome with Single-Molecule Sensitivity in Single Cells , 2010, Science.

[27]  J. Weissman,et al.  A general lack of compensation for gene dosage in yeast , 2010, Molecular systems biology.

[28]  B. Kallipolitis,et al.  Translational Regulation of Gene Expression by an Anaerobically Induced Small Non-coding RNA in Escherichia coli* , 2010, The Journal of Biological Chemistry.

[29]  Christopher A. Voigt,et al.  Automated Design of Synthetic Ribosome Binding Sites to Precisely Control Protein Expression , 2009, Nature Biotechnology.

[30]  Lukas N. Mueller,et al.  Full Dynamic Range Proteome Analysis of S. cerevisiae by Targeted Proteomics , 2009, Cell.

[31]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[32]  Johan Elf,et al.  Effects of macromolecular crowding and DNA looping on gene regulation kinetics , 2009 .

[33]  M. Elowitz,et al.  Frequency-modulated nuclear localization bursts coordinate gene regulation , 2008, Nature.

[34]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[35]  Angelika Amon,et al.  Aneuploidy: Cells Losing Their Balance , 2008, Genetics.

[36]  D. Frishman,et al.  Protein abundance profiling of the Escherichia coli cytosol , 2008, BMC Genomics.

[37]  M. Mann,et al.  Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. , 2008, Journal of proteome research.

[38]  N. Barkai,et al.  Variability and robustness in biomolecular systems. , 2007, Molecular cell.

[39]  Uri Alon,et al.  Input–output robustness in simple bacterial signaling systems , 2007, Proceedings of the National Academy of Sciences.

[40]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[41]  S. Chevalier,et al.  Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. , 2007, Rapid communications in mass spectrometry : RCM.

[42]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[43]  P. V. Hippel From "Simple" DNA-Protein Interactions to the Macromolecular Machines of Gene Expression , 2007 .

[44]  Uri Alon,et al.  Rules for biological regulation based on error minimization. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[45]  U. Alon,et al.  Optimality and evolutionary tuning of the expression level of a protein , 2005, Nature.

[46]  Peter S Swain,et al.  Efficient attenuation of stochasticity in gene expression through post-transcriptional control. , 2004, Journal of molecular biology.

[47]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[48]  C. Pál,et al.  Dosage sensitivity and the evolution of gene families in yeast , 2003, Nature.

[49]  O. Geiger,et al.  Biosynthesis of phosphatidylcholine in bacteria. , 2003, Progress in lipid research.

[50]  M. Goulian,et al.  Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[52]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[53]  Sarah E. Ades,et al.  The Escherichia coli sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-sigma factor. , 1999, Genes & development.

[54]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[55]  Koreaki Ito,et al.  FtsH (HflB) Is an ATP-dependent Protease Selectively Acting on SecY and Some Other Membrane Proteins* , 1996, The Journal of Biological Chemistry.

[56]  D. Fell Understanding the Control of Metabolism , 1996 .

[57]  F. Buttgereit,et al.  A hierarchy of ATP-consuming processes in mammalian cells. , 1995, The Biochemical journal.

[58]  J. Russell,et al.  Energetics of bacterial growth: balance of anabolic and catabolic reactions. , 1995, Microbiological reviews.

[59]  C. Kurland,et al.  Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction , 1995, Journal of bacteriology.

[60]  B. Rautenstrauss,et al.  Differential proteolytic sensitivity of yeast fatty acid synthetase subunits alpha and beta contributing to a balanced ratio of both fatty acid synthetase components. , 1992, European journal of biochemistry.

[61]  C. Kurland,et al.  Codon preferences in free-living microorganisms. , 1990, Microbiological reviews.

[62]  C. Petersen Escherichia coli ribosomal protein L10 is rapidly degraded when synthesized in excess of ribosomal protein L7/L12 , 1990, Journal of bacteriology.

[63]  H. Lodish,et al.  Unequal synthesis and differential degradation of alpha and beta spectrin during murine erythroid differentiation , 1988, The Journal of cell biology.

[64]  A. Grossman,et al.  Sigma 32 synthesis can regulate the synthesis of heat shock proteins in Escherichia coli. , 1987, Genes & development.

[65]  A. Datko,et al.  Quantitative analysis of pathways of methionine metabolism and their regulation in lemna. , 1985, Plant physiology.

[66]  M. Nomura,et al.  Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli , 1983, Cell.

[67]  R. Moon,et al.  Synthesis and assembly of spectrin during avian erythropoiesis: Stoichiometric assembly but unequal synthesis of α and β spectrin , 1983, Cell.

[68]  D. Klionsky,et al.  Differential polypeptide synthesis of the proton-translocating ATPase of Escherichia coli , 1982, Journal of bacteriology.

[69]  P. V. von Hippel,et al.  Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor--operator interaction: kinetic measurements and conclusions. , 1981, Biochemistry.

[70]  G. Williams,et al.  The relative rates of protein synthesis and degradation in a growing culture of Escherichia coli. , 1980, The Journal of biological chemistry.

[71]  F. Hirata,et al.  Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[72]  F. Neidhardt,et al.  Transient rates of synthesis of individual polypeptides in E. coli following temperature shifts , 1978, Cell.

[73]  M A Savageau,et al.  Design of molecular control mechanisms and the demand for gene expression. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[74]  P. Dennis,et al.  In vivo stability, maturation and relative differential synthesis rates of individual ribosomal proteins in Escherichia coli B/r. , 1974, Journal of molecular biology.

[75]  F. Neidhardt,et al.  Culture Medium for Enterobacteria , 1974, Journal of bacteriology.

[76]  J. Maizel,et al.  Synthesis of Excess Light Chains of Gamma Globulin by Rabbit Lymph Node Cells , 1966, Nature.

[77]  J. Tukey The Future of Data Analysis , 1962 .

[78]  M. Selbach,et al.  Global analysis of cellular protein translation by pulsed SILAC , 2009, Proteomics.

[79]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[80]  Antje Chang,et al.  BRENDA, enzyme data and metabolic information , 2002, Nucleic Acids Res..

[81]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[82]  C. Gualerzi,et al.  Translational control of prokaryotic gene expression. , 1990, Trends in genetics : TIG.

[83]  R. Gourse,et al.  Regulation of the synthesis of ribosomes and ribosomal components. , 1984, Annual review of biochemistry.

[84]  R. Moon,et al.  Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and beta spectrin. , 1983, Cell.