Supervision, Fault-Detection and Fault-Diagnosis Methods

The operation of technical processes requires increasingly advanced supervision and fault diagnosis to improve reliability, safety and economy. This contribution describes advanced methods of fault detection and diagnosis. It begins with the consideration of a knowledge-based procedure, which is based on analytical and heuristic information. Then different methods of fault detection are considered, which extract features from measured signals and use process and signal models. These methods are based on parameter estimation, state estimation and parity equations. By comparison with the normal behaviour, analytic symptoms are generated. Human operators may be a further source of information and support the generation of heuristic symptoms. For fault diagnosis, all symptoms have to be processed in order to determine possible faults. This can be performed by classification methods or approximate reasoning, using probabilistic or possibilistic (fuzzy) approaches based on if-then rules. The application of these methods is shown for fault detection and diagnosis of a machine tool drive and a d.c.motor. Emphasis is given to the application of fuzzy logic in various parts of the diagnosis system.

[1]  Steffen Leonhardt Modellgestützte Fehlererkennung mit Neuronalen Netzen - Überwachung von Radaufhängungen und Diesel-Einspritzanlagen , 1996 .

[2]  Rolf Isermann,et al.  Trends in the Application of Model Based Fault Detection and Diagnosis of Technical Processes , 1996 .

[3]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[4]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems: theory and application , 1989 .

[5]  D. Neumann Fault Diagnosis of Machine-Tools by Estimation of Signal Spectra , 1991 .

[6]  S. Nold Knowledge based Real Time Fault Diagnosis with EFTAS , 1991 .

[7]  J. Reggia,et al.  Abductive Inference Models for Diagnostic Problem-Solving , 1990, Symbolic Computation.

[8]  James C. Bezdek,et al.  Fuzzy models—What are they, and why? [Editorial] , 1993, IEEE Transactions on Fuzzy Systems.

[9]  Mihiar Ayoubi,et al.  Fuzzy systems design based on a hybrid neural structure and application to the fault diagnosis of technical processes , 1996 .

[10]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[11]  Didier Dubois,et al.  Handling uncertainty with possibility theory and fuzzy sets in a satellite fault diagnosis application , 1996, IEEE Trans. Fuzzy Syst..

[12]  Edward H. Shortliffe,et al.  Computer-based medical consultations, MYCIN , 1976 .

[13]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[14]  Rolf Isermann,et al.  Fault diagnosis of machines via parameter estimation and knowledge processing - Tutorial paper , 1991, Autom..

[15]  Richard Vernon Beard,et al.  Failure accomodation in linear systems through self-reorganization. , 1971 .

[16]  Rolf Isermann,et al.  On fuzzy logic applications for automatic control, supervision, and fault diagnosis , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[17]  J.J. Gertler,et al.  Survey of model-based failure detection and isolation in complex plants , 1988, IEEE Control Systems Magazine.

[18]  Alan S. Willsky,et al.  A survey of design methods for failure detection in dynamic systems , 1976, Autom..

[19]  R. N. Claek Instrument Fault Detection , 1978 .

[20]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[21]  Robert Milne,et al.  Strategies for Diagnosis , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  Fernando Gomide,et al.  A neurofuzzy approach for fault diagnosis in dynamic systems , 1996, Proceedings of IEEE 5th International Fuzzy Systems.

[23]  Hans-Jürgen Zimmermann,et al.  Fuzzy Set Theory - and Its Applications , 1985 .

[24]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[25]  Rolf Isermann,et al.  Integrated fault detection and diagnosis , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[26]  R. K. Mehra,et al.  Correspondence item: An innovations approach to fault detection and diagnosis in dynamic systems , 1971 .

[27]  D. Barschdorff,et al.  Neuronale Netze als Signal- und Musterklassifikatoren / Neural networks as signal and pattern classifiers , 1990 .

[28]  Janos J. Gertler,et al.  Analytical Redundancy Methods in Fault Detection and Isolation , 1991 .

[29]  E. Sanchez,et al.  Inverses of fuzzy relations: Application to possibility distributions and medical diagnosis , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[30]  Michèle Basseville,et al.  Detection of Abrupt Changes in Signals and Dynamical Systems , 1985 .

[31]  S. D. Stearns,et al.  Digital Signal Analysis , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  R. Patton,et al.  A Review of Parity Space Approaches to Fault Diagnosis , 1991 .

[33]  Pamela K. Fink,et al.  Expert Systems and Diagnostic Expertise in the Mechanical and Electrical Domains , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Mo-Yuen Chow,et al.  A hybrid fuzzy/neural system used to extract heuristic knowledge from a fault detection problem , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[35]  R. Clark A Simplified Instrument Failure Detection Scheme , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[36]  M. Dohnal,et al.  Multilevel failure detection system , 1985 .

[37]  Janos Gertler,et al.  Generating directional residuals with dynamic parity relations , 1995, Autom..

[38]  Rolf Isermann,et al.  Process fault detection based on modeling and estimation methods - A survey , 1984, Autom..

[39]  Richard E. Barlow,et al.  Statistical Theory of Reliability and Life Testing: Probability Models , 1976 .

[40]  Gary G. Yen Autonomous neural control in flexible space structures , 1995 .

[41]  Harold Lee Jones,et al.  Failure detection in linear systems , 1973 .

[42]  Jie Zhang,et al.  Fault diagnosis of a cstr using fuzzy neural networks , 1994 .

[43]  Janos Gertler,et al.  Generating Directional Residuals with Dynamic Parity Equations , 1993 .

[44]  B. Freyermuth Knowledge based Incipient Fault Diagnosis of Industrial Robots , 1991 .

[45]  Piotr J. Gmytrasiewicz,et al.  Fault Tree Based Diagnostics Using Fuzzy Logic , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Ludwig Braun,et al.  Adaptive control systems , 1959 .

[47]  Jacek Kitowski,et al.  Diagnostics of faulty states in complex physical systems using fuzzy relational equations , 1987 .

[48]  Richard A. Frost,et al.  Introduction to Knowledge Base Systems , 1986 .

[49]  Paul M. Frank Advanced Fault Detection and Isolation Schemes Using Nonlinear and Robust Observers , 1987 .

[50]  Thomas Pfeufer,et al.  Detection of Additive and Multiplicative Faults - Parity Space vs. Parameter Estimation , 1994 .

[51]  Paul M. Frank,et al.  Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation , 1996, IEEE Trans. Control. Syst. Technol..

[52]  R. Isermann Estimation of physical parameters for dynamic processes with application to an industrial robot , 1992 .

[53]  D. Fussel,et al.  Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme , 1998, IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200).

[54]  Brian C. Williams,et al.  Reasoning about Multiple Faults , 1986, AAAI.

[55]  M. Pistauer,et al.  Multistep parameter learning in a neural network based fuzzy diagnosis module , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[56]  C. H. Lie,et al.  Fault Tree Analysis, Methods, and Applications ߝ A Review , 1985, IEEE Transactions on Reliability.

[57]  David Mautner Himmelblau,et al.  Fault detection and diagnosis in chemical and petrochemical processes , 1978 .

[58]  Rolf Isermann FAULT DIAGNOSIS OF MACHINES VIA PARAMETER ESTIMATION AND KNOWLEDGE PROCESSING , 1992 .

[59]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..