Comparison of Simulated Sonic Boom in Stratified Atmosphere with Flight Test Measurements

A method for predicting sonic boom waveforms emanating from a vehicle flying at supersonic speed is presented and compared to flight-test data. The prediction is achieved through three main steps: ...

[1]  Alan M. Shih,et al.  Three‐dimensional automatic local remeshing for two or more hybrid meshes , 2011 .

[2]  François Coulouvrat,et al.  Meteorologically induced variability of sonic-boom characteristics of supersonic aircraft in cruising flight , 2005 .

[3]  Juliet Page,et al.  An efficient method for incorporating computational fluid dynamics into sonic boom prediction , 1991 .

[4]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[5]  Victor W. Sparrow,et al.  Solution of the Lossy Nonlinear Tricomi Equation Applied to Sonic Boom Focusing , 2013 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[7]  C. M. Darden,et al.  Sonic-boom minimization with nose-bluntness relaxation , 1979 .

[8]  Shigeru Obayashi,et al.  Practical formulation of a positively conservative scheme , 1994 .

[9]  F. Coulouvrat,et al.  Numerical Simulation of Sonic Boom Focusing , 2002 .

[10]  Allan D. Pierce,et al.  Acoustics , 1989 .

[11]  Osama A. Kandil,et al.  Fun3D / OptiGRID Coupling for Unstructured Grid Adaptation for Sonic Boom Problems , 2008 .

[12]  Masashi Kanamori,et al.  Effect of Low-Boom Waveform on Focus Boom Using Lossy Nonlinear Tricomi Analysis , 2017 .

[13]  J. F. Clarke,et al.  Shock waves in a gas with several relaxing internal energy modes , 1965, Journal of Fluid Mechanics.

[14]  Alan M. Shih,et al.  Efficient Hybrid Surface/Volume Mesh Generation Using Suppressed Marching-Direction Method , 2013 .

[15]  L. B. Jones Lower Bounds for Sonic Bangs in the Far Field , 1967 .

[16]  Frédéric Alauzet,et al.  High-order sonic boom modeling based on adaptive methods , 2010, J. Comput. Phys..

[17]  S. Obayashi,et al.  Convergence acceleration of a Navier-Stokes solver for efficient static aeroelastic computations , 1995 .

[18]  Juan J. Alonso,et al.  Adjoint-based method for supersonic aircraft design using equivalent area distributions , 2012 .

[19]  Alan M. Shih,et al.  Efficient Computational Fluid Dynamics Evaluation of Small-Device Locations with Automatic Local Remeshing , 2009 .

[20]  Meng-Sing Liou,et al.  A Flux Splitting Scheme with High-Resolution and Robustness for Discontinuities(Proceedings of the 12th NAL Symposium on Aircraft Computational Aerodynamics) , 1994 .

[21]  Atsushi Hashimoto,et al.  A unified approach to an augmented Burgers equation for the propagation of sonic booms. , 2015, The Journal of the Acoustical Society of America.

[22]  Anthony R. Pilon Spectrally Accurate Prediction of Sonic Boom Signals , 2007 .

[23]  Peter G. Coen,et al.  Origins and Overview of the Shaped Sonic Boom Demonstration Program , 2005 .

[24]  Alexandra Loubeau,et al.  Effects of Meteorological Variability on Sonic Boom Propagation from Hypersonic Aircraft , 2009 .

[25]  François Coulouvrat,et al.  Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom. , 2003, The Journal of the Acoustical Society of America.

[26]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[27]  R. Seebass,et al.  SONIC BOOM MINIMIZATION , 1998 .

[28]  P. Blanc-Benon,et al.  Weakly nonlinear propagation of small-wavelength, impulsive acoustic waves in a general atmosphere , 2017 .

[29]  Dochan Kwak,et al.  Implicit Navier-Stokes Solver for Three-Dimensional Compressible Flows , 1992 .

[30]  Takeharu Sakai,et al.  Real Gas Effects on Weak Shock Wave Propagation in an Atmosphere , 2010 .

[31]  Kazuhiro Nakahashi,et al.  Some challenges of realistic flow simulations by unstructured grid CFD , 2003 .

[32]  Takashi Yamane,et al.  The Development of the UPACS CFD Environment , 2003, ISHPC.

[33]  R. Cleveland,et al.  Time‐domain modeling of finite‐amplitude sound in relaxing fluids , 1995 .

[34]  D. Blackstock Thermoviscous Attenuation of Plane, Periodic, Finite‐Amplitude Sound Waves , 1964 .

[35]  Philippe Blanc-Benon,et al.  Random focusing of nonlinear acoustic N-waves in fully developed turbulence: laboratory scale experiment. , 2011, The Journal of the Acoustical Society of America.

[36]  Eiji Shima,et al.  Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds , 2011 .