Isotonic distributional regression

Isotonic distributional regression (IDR) is a powerful nonparametric technique for the estimation of conditional distributions under order restrictions. In a nutshell, IDR learns conditional distributions that are calibrated, and simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to isotonicity constraints in terms of a partial order on the covariate space. Nonparametric isotonic quantile regression and probabilistic classifiers for binary events emerge as special cases. For prediction, we propose an interpolation method that generalizes extant specifications under the pool adjacent violators algorithm. We recommend the use of IDR as a generic benchmark technique in probabilistic forecast problems, as it does not involve any parameter tuning nor implementation choices, except for the selection of a partial order on the covariate space. The method can be combined with subsample aggregation, with the benefits of smoother regression functions and computational efficiency under large training sets. In a case study on raw and postprocessed quantitative precipitation forecasts from a leading numerical weather prediction system, IDR is competitive with state of the art techniques.

[1]  Olivier Mestre,et al.  Forest-Based and Semiparametric Methods for the Postprocessing of Rainfall Ensemble Forecasting , 2019, Weather and Forecasting.

[2]  Chris Lloyd,et al.  Estimation of a convex ROC curve , 2002 .

[3]  M. Carvalho,et al.  Discussion of "Of Quantiles and Expectiles: Consistent Scoring Functions, Choquet Representations and Forecast Rankings," by Ehm, W., Gneiting, T., Jordan, A., and Krüger , 2016 .

[4]  M. Leutbecher Ensemble size: How suboptimal is less than infinity? , 2018, Quarterly Journal of the Royal Meteorological Society.

[5]  Jeremy Berkowitz Testing Density Forecasts, With Applications to Risk Management , 2001 .

[6]  Enno Mammen,et al.  Estimating a Smooth Monotone Regression Function , 1991 .

[7]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[8]  A. P. Dawid,et al.  Present position and potential developments: some personal views , 1984 .

[9]  H. Barmi,et al.  ESTIMATION OF DISTRIBUTION FUNCTIONS UNDER SECOND ORDER STOCHASTIC DOMINANCE , 2003 .

[10]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[11]  R. Buizza,et al.  A Comparison of the ECMWF, MSC, and NCEP Global Ensemble Prediction Systems , 2005 .

[12]  R. E. Miles THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS , 1959 .

[13]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[14]  Adityanand Guntuboyina,et al.  Nonparametric Shape-Restricted Regression , 2017, Statistical Science.

[15]  Philip H. Ramsey Statistical Methods in the Atmospheric Sciences , 2005 .

[16]  Victor Chernozhukov,et al.  Quantile regression , 2019, Journal of Econometrics.

[17]  M. Scheuerer Probabilistic quantitative precipitation forecasting using Ensemble Model Output Statistics , 2013, 1302.0893.

[18]  Tim Robertson,et al.  Algorithms in Order Restricted Statistical Inference and the Cauchy Mean Value Property , 1980 .

[19]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[20]  Adrian E. Raftery,et al.  Weather Forecasting with Ensemble Methods , 2005, Science.

[21]  Jean D. Opsomer,et al.  Penalized isotonic regression , 2015 .

[22]  Nikolaus Umlauf,et al.  A primer on Bayesian distributional regression , 2018 .

[23]  Jakob W. Messner Ensemble Postprocessing With R , 2018 .

[24]  D. J. Bartholomew,et al.  A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .

[25]  Stefania Tamea,et al.  Verification tools for probabilistic forecasts of continuous hydrological variables , 2006 .

[26]  A. Raftery,et al.  Using Bayesian Model Averaging to Calibrate Forecast Ensembles , 2005 .

[27]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[28]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[29]  Achim Zeileis,et al.  Extending Extended Logistic Regression: Extended versus Separate versus Ordered versus Censored , 2014 .

[30]  T. Hothorn,et al.  Distributional regression forests for probabilistic precipitation forecasting in complex terrain , 2018, The Annals of Applied Statistics.

[31]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[32]  S. Athey,et al.  Generalized random forests , 2016, The Annals of Statistics.

[33]  Linda Schulze Waltrup,et al.  Expectile and quantile regression—David and Goliath? , 2015 .

[34]  Mark S. Allen,et al.  Value from Ambiguity in Ensemble Forecasts , 2012 .

[35]  Thomas M. Hamill,et al.  Statistical Postprocessing of Ensemble Precipitation Forecasts by Fitting Censored, Shifted Gamma Distributions* , 2015 .

[36]  Brian Neelon,et al.  Bayesian Isotonic Regression and Trend Analysis , 2004, Biometrics.

[37]  Estimating a distribution function subject to a stochastic order restriction: a comparative study , 2012 .

[38]  Jeffrey S. Racine,et al.  Nonparametric Estimation of Conditional CDF and Quantile Functions With Mixed Categorical and Continuous Data , 2008 .

[39]  N. Pillai,et al.  Bayesian density regression , 2007 .

[40]  Craig H. Bishop,et al.  The THORPEX Interactive Grand Global Ensemble , 2010 .

[41]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[42]  Stephen P. Boyd,et al.  OSQP: an operator splitting solver for quadratic programs , 2017, 2018 UKACC 12th International Conference on Control (CONTROL).

[43]  H. D. Brunk Maximum Likelihood Estimates of Monotone Parameters , 1955 .

[44]  Anthony S. Tay,et al.  Evaluating Density Forecasts with Applications to Financial Risk Management , 1998 .

[45]  Thomas M. Hamill Practical Aspects of Statistical Postprocessing , 2018 .

[46]  T. Gneiting,et al.  Combining Predictive Distributions , 2011, 1106.1638.

[47]  Tim N. Palmer,et al.  Ensemble forecasting , 2008, J. Comput. Phys..

[48]  L. Dümbgen,et al.  Maximum Likelihood Estimation of a Likelihood Ratio Ordered Family of Distributions , 2020 .

[49]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[50]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[51]  Linda Schulze Waltrup,et al.  Expectile and Quantile Regression , 2014 .

[52]  Jeffrey S. Racine,et al.  Nonparametric Econometrics: The np Package , 2008 .

[53]  Torsten Hothorn,et al.  Most Likely Transformations: The mlt Package , 2020, Journal of Statistical Software.

[54]  Eric M. Aldrich,et al.  Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center , 2006 .

[55]  Vladimir Vovk,et al.  Nonparametric predictive distributions based on conformal prediction , 2017, Machine Learning.

[56]  R. Spady,et al.  Dual regression , 2012, 1210.6958.

[57]  A. Gupta,et al.  A Bayesian Approach to , 1997 .

[58]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[59]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[60]  Geurt Jongbloed,et al.  Nonparametric Estimation under Shape Constraints , 2014 .

[61]  Niko Brümmer,et al.  The PAV algorithm optimizes binary proper scoring rules , 2013, ArXiv.

[62]  Chu-in Charles Lee,et al.  The Min-Max Algorithm and Isotonic Regression , 1983 .

[63]  Rodney C. Wolff,et al.  Methods for estimating a conditional distribution function , 1999 .

[64]  W. John Wilbur,et al.  The Synergy Between PAV and AdaBoost , 2005, Machine Learning.

[65]  J. Kalbfleisch Statistical Inference Under Order Restrictions , 1975 .

[66]  H. Dette,et al.  A simple nonparametric estimator of a strictly monotone regression function , 2006 .

[67]  R. L. Winkler,et al.  Scoring Rules for Continuous Probability Distributions , 1976 .

[68]  Robert V. Hogg,et al.  On Models and Hypotheses with Restricted Alternatives , 1965 .

[69]  Tom Fawcett,et al.  PAV and the ROC convex hull , 2007, Machine Learning.

[70]  Tilmann Gneiting,et al.  Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa , 2017, 1708.04420.

[71]  C. vanEeden Testing and estimating ordered parameters of probability distribution , 1958 .

[72]  T. Gneiting,et al.  Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules , 2011 .

[73]  Maria-Helena Ramos,et al.  How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction , 2015 .

[74]  J. Leeuw,et al.  Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods , 2009 .

[75]  Anton H. Westveld,et al.  Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation , 2005 .

[76]  Tilmann Gneiting,et al.  Of quantiles and expectiles: consistent scoring functions, Choquet representations and forecast rankings , 2015, 1503.08195.

[77]  Moulinath Banerjee,et al.  Divide and conquer in nonstandard problems and the super-efficiency phenomenon , 2016, The Annals of Statistics.

[78]  Jonathan D. Cryer,et al.  Monotone Percentile Regression , 1976 .

[79]  Alexander I. Jordan,et al.  Stable reliability diagrams for probabilistic classifiers , 2021, Proceedings of the National Academy of Sciences.

[80]  T. Gneiting,et al.  Uncertainty Quantification in Complex Simulation Models Using Ensemble Copula Coupling , 2013, 1302.7149.

[81]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[82]  H. Mukerjee,et al.  Inferences Under a Stochastic Ordering Constraint , 2005 .

[83]  Zied Ben Bouallègue,et al.  The diagonal score: Definition, properties, and interpretations , 2018, Quarterly Journal of the Royal Meteorological Society.

[84]  Kyoungwon Seo,et al.  AMBIGUITY AND SECOND-ORDER BELIEF , 2009 .

[85]  Sabyasachi Chatterjee,et al.  Isotonic regression in general dimensions , 2017, The Annals of Statistics.

[86]  Syama Sundar Rangapuram,et al.  Probabilistic Forecasting with Spline Quantile Function RNNs , 2019, AISTATS.

[87]  J. M. Sloughter,et al.  Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging , 2007 .

[88]  Tim Robertson,et al.  Consistency in Generalized Isotonic Regression , 1975 .

[89]  A. Raftery,et al.  Calibrating Multimodel Forecast Ensembles with Exchangeable and Missing Members Using Bayesian Model Averaging , 2010 .

[90]  Stochastic Orders , 2008 .

[91]  Stephan Rasp,et al.  Neural networks for post-processing ensemble weather forecasts , 2018, Monthly Weather Review.

[92]  Olivier Mestre,et al.  Calibrated Ensemble Forecasts Using Quantile Regression Forests and Ensemble Model Output Statistics , 2016 .

[93]  Torsten Hothorn,et al.  Bagging survival trees , 2002, Statistics in medicine.

[94]  Nicolai Meinshausen,et al.  Quantile Regression Forests , 2006, J. Mach. Learn. Res..

[95]  R. L. Winkler A Decision-Theoretic Approach to Interval Estimation , 1972 .

[96]  H. D. Brunk,et al.  AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .

[97]  M. Schervish A General Method for Comparing Probability Assessors , 1989 .

[98]  G. Brightwell Random k-dimensional orders: Width and number of linear extensions , 1992 .

[99]  Florian Pappenberger,et al.  The TIGGE Project and Its Achievements , 2016 .

[100]  Alexander I. Jordan,et al.  Characterizing the optimal solutions to the isotonic regression problem for identifiable functionals , 2021, Annals of the Institute of Statistical Mathematics.

[101]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[102]  Nadja Klein,et al.  Bayesian structured additive distributional regression with an application to regional income inequality in Germany , 2015, 1509.05230.

[103]  Constance van Eeden,et al.  Testing and estimating ordered parameters of probability distribution , 1958 .

[104]  A. Buja,et al.  OBSERVATIONS ON BAGGING , 2006 .

[105]  Torsten Hothorn,et al.  Conditional transformation models , 2012, 1201.5786.

[106]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[107]  S. Walker,et al.  A Bayesian approach to non‐parametric monotone function estimation , 2009 .

[108]  A. Raftery,et al.  Probabilistic forecasts, calibration and sharpness , 2007 .

[109]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[110]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[111]  L. Duembgen,et al.  Monotone least squares and isotonic quantiles , 2019, Electronic Journal of Statistics.