A Machine Learning-Based Approach for Prediction of Plant Protection Product Deposition
暂无分享,去创建一个
André Carlos Ponce de Leon Ferreira de Carvalho | Pedro Henrique Gomes | Bruno S. Faiçal | Leandro Y. Mano | Carlos R. G. Junior | Rone B. de Oliveira | A. Carvalho | P. Gomes | L. Mano | Carlos R. G. Junior | R. B. Oliveira
[1] D. Weisenburger. Human health effects of agrichemical use. , 1993, Human pathology.
[2] David Nuyttens,et al. Sprayer-canopy characterization using field experiments and CFD modelling , 2013 .
[3] Arthur T. Johnson,et al. Food for the Future [State of the Art] , 2016 .
[4] Marcelo da Costa Ferreira,et al. Distribuição da calda herbicida por pontas de pulverização agrícola utilizadas em áreas de reflorestamento com eucalipto , 2009 .
[5] Gary J. Dorr,et al. Impacts of polymer/surfactant interactions on spray drift , 2016 .
[6] David Nuyttens,et al. The relative importance of environmental and field sprayer parameters for reducing drift: a CFD sensitivity study , 2006 .
[7] David F. Fletcher,et al. Lagrangian and Eulerian models for simulating turbulent dispersion and coalescence of droplets within a spray , 2006 .
[8] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[9] Kyriaki Machera,et al. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece. , 2014, The Science of the total environment.
[10] W. Marsden. I and J , 2012 .
[11] J. Rosell-Llompart,et al. Efficient Lagrangian simulation of electrospray droplets dynamics , 2012 .
[12] David Nuyttens,et al. A meta analysis of spray drift sampling , 2011 .