Solving Inverse Kinematics Problems by Decomposition, Classification and Simple Modeling

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[3]  Mahmoud Tarokh Solving inverse problems by decomposition, classification and simple modeling , 2013, Inf. Sci..

[4]  Bart Vanrumste,et al.  Journal of Neuroengineering and Rehabilitation Open Access Review on Solving the Inverse Problem in Eeg Source Analysis , 2022 .

[5]  J V Tu,et al.  Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. , 1996, Journal of clinical epidemiology.

[6]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[7]  A. Morgan,et al.  Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods , 1985 .

[8]  Plamen Stefanov,et al.  Inverse Problems and Applications , 2014 .

[9]  Lalita Udpa,et al.  Neural network-based inversion algorithms in magnetic flux leakage nondestructive evaluation , 2003 .

[10]  Daniel S. Yeung,et al.  A genetic algorithm for solving the inverse problem of support vector machines , 2005, Neurocomputing.

[11]  MaryGeorge L. Whitney Theoretical and Numerical Study of Tikhonov's Regularization and Morozov's Discrepancy Principle , 2009 .

[12]  Bangti Jin,et al.  Hierarchical Bayesian inference for Ill-posed problems via variational method , 2010, J. Comput. Phys..

[13]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[14]  Bangti Jin,et al.  Augmented Tikhonov regularization , 2009 .

[15]  Józef Knapczyk,et al.  Manipulator kinematics , 1999 .

[16]  Mahmoud Tarokh,et al.  Inverse Kinematics of 7-DOF Robots and Limbs by Decomposition and Approximation , 2007, IEEE Transactions on Robotics.

[17]  Norman I. Badler,et al.  Inverse kinematics positioning using nonlinear programming for highly articulated figures , 1994, TOGS.

[18]  Albert Tarantola,et al.  Probabilistic Approach to Inverse Problems , 2002 .

[19]  Dinesh Manocha,et al.  Efficient inverse kinematics for general 6R manipulators , 1994, IEEE Trans. Robotics Autom..

[20]  Geoff Dougherty,et al.  Pattern Recognition and Classification , 2013, Springer New York.

[21]  M. Fornasier Domain decomposition methods for linear inverse problems with sparsity constraints , 2007 .

[22]  V. Dubey,et al.  Inverse problem of photoelastic fringe mapping using neural networks , 2007 .

[23]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[24]  Helmut Schiller,et al.  Some neural network applications in environmental sciences. Part I: forward and inverse problems in geophysical remote measurements , 2003, Neural Networks.

[25]  Samuel N. Cubero,et al.  Industrial Robotics: Theory, Modelling and Control , 2006 .

[26]  Minjuan Wang,et al.  A Computational Intelligent Approach to Kinematics Problems in Robotics and Computer Animation , 2011, Int. J. Humanoid Robotics.