Correcting for unknown errors in sparse high-dimensional function approximation

We consider sparsity-based techniques for the approximation of high-dimensional functions from random pointwise evaluations. To date, almost all the works published in this field contain some a priori assumptions about the error corrupting the samples that are hard to verify in practice. In this paper, we instead focus on the scenario where the error is unknown. We study the performance of four sparsity-promoting optimization problems: weighted quadratically-constrained basis pursuit, weighted LASSO, weighted square-root LASSO, and weighted LAD-LASSO. From the theoretical perspective, we prove uniform recovery guarantees for these decoders, deriving recipes for the optimal choice of the respective tuning parameters. On the numerical side, we compare them in the pure function approximation case and in applications to uncertainty quantification of ODEs and PDEs with random inputs. Our main conclusion is that the lesser-known square-root LASSO is better suited for high-dimensional approximation than the other procedures in the case of bounded noise, since it avoids (both theoretically and numerically) the need for parameter tuning.

[1]  Helmut Bölcskei,et al.  Recovery of Sparsely Corrupted Signals , 2011, IEEE Transactions on Information Theory.

[2]  D. Xiu,et al.  STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION , 2012 .

[3]  Albert Cohen,et al.  Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .

[4]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[5]  Qiang Li,et al.  Robust change point detection method via adaptive LAD-LASSO , 2020 .

[6]  Ben Adcock,et al.  Robustness to Unknown Error in Sparse Regularization , 2017, IEEE Transactions on Information Theory.

[7]  Lars Grasedyck,et al.  Hierarchical Tensor Approximation of Output Quantities of Parameter-Dependent PDEs , 2015, SIAM/ASA J. Uncertain. Quantification.

[8]  C. D. Boor,et al.  On multivariate polynomial interpolation , 1990 .

[9]  Fabio Nobile,et al.  Analysis of Discrete $$L^2$$L2 Projection on Polynomial Spaces with Random Evaluations , 2014, Found. Comput. Math..

[10]  Cun-Hui Zhang,et al.  Adaptive Lasso for sparse high-dimensional regression models , 2008 .

[11]  Dongcai Su,et al.  Data recovery from corrupted observations via l1 minimization , 2016, ArXiv.

[12]  Victor Chernozhukov,et al.  Pivotal estimation via square-root Lasso in nonparametric regression , 2014 .

[13]  Anders C. Hansen,et al.  On the absence of the RIP in real-world applications of compressed sensing and the RIP in levels , 2014, ArXiv.

[14]  Seung Jun Baek,et al.  Sufficient Conditions on Stable Recovery of Sparse Signals With Partial Support Information , 2013, IEEE Signal Processing Letters.

[15]  Petre Stoica,et al.  Connection between SPICE and Square-Root LASSO for sparse parameter estimation , 2014, Signal Process..

[16]  Joshua R. Loftus,et al.  Selective inference with unknown variance via the square-root lasso , 2015, Biometrika.

[17]  George G. Lorentz,et al.  Solvability problems of bivariate interpolation I , 1986 .

[18]  Dongcai Su Compressed sensing with corrupted Fourier measurements , 2016, ArXiv.

[19]  Nira Dyn,et al.  Multivariate polynomial interpolation on lower sets , 2014, J. Approx. Theory.

[20]  Dongbin Xiu,et al.  Correcting Data Corruption Errors for Multivariate Function Approximation , 2016, SIAM J. Sci. Comput..

[21]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[22]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[23]  Albert Cohen,et al.  Discrete least squares polynomial approximation with random evaluations − application to parametric and stochastic elliptic PDEs , 2015 .

[24]  Sara van de Geer,et al.  Estimation and Testing Under Sparsity: École d'Été de Probabilités de Saint-Flour XLV – 2015 , 2016 .

[25]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[26]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[27]  Xiu Yang,et al.  Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations , 2013, J. Comput. Phys..

[28]  Ben Adcock,et al.  Compressed Sensing with Sparse Corruptions: Fault-Tolerant Sparse Collocation Approximations , 2017, SIAM/ASA J. Uncertain. Quantification.

[29]  Richard G. Baraniuk,et al.  Exact signal recovery from sparsely corrupted measurements through the Pursuit of Justice , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[30]  Florentina Bunea,et al.  The Group Square-Root Lasso: Theoretical Properties and Fast Algorithms , 2013, IEEE Transactions on Information Theory.

[31]  H. Rauhut,et al.  Interpolation via weighted $l_1$ minimization , 2013, 1308.0759.

[32]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[33]  Ben Adcock,et al.  Infinite-dimensional $\ell^1$ minimization and function approximation from pointwise data , 2015, 1503.02352.

[34]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[35]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[36]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[37]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[38]  R. Tempone,et al.  Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .

[39]  Holger Rauhut,et al.  Compressive sensing Petrov-Galerkin approximation of high-dimensional parametric operator equations , 2014, Math. Comput..

[40]  Xiaodong Li,et al.  Compressed Sensing and Matrix Completion with Constant Proportion of Corruptions , 2011, Constructive Approximation.

[41]  Albert Cohen,et al.  Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..

[42]  H. Dette,et al.  The adaptive lasso in high-dimensional sparse heteroscedastic models , 2013 .

[43]  Ben Adcock,et al.  Recovery guarantees for Compressed Sensing with unknown errors , 2017, 2017 International Conference on Sampling Theory and Applications (SampTA).

[44]  Sara A. van de Geer,et al.  Sharp Oracle Inequalities for Square Root Regularization , 2015, J. Mach. Learn. Res..

[45]  Hoang Tran,et al.  Polynomial approximation via compressed sensing of high-dimensional functions on lower sets , 2016, Math. Comput..

[46]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[47]  Olcay Arslan,et al.  Weighted LAD-LASSO method for robust parameter estimation and variable selection in regression , 2012, Comput. Stat. Data Anal..

[48]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[49]  Trac D. Tran,et al.  Exact Recoverability From Dense Corrupted Observations via $\ell _{1}$-Minimization , 2011, IEEE Transactions on Information Theory.

[50]  C. O’Brien Statistical Learning with Sparsity: The Lasso and Generalizations , 2016 .

[51]  Xiaoli Gao Penalized methods for high-dimensional least absolute deviations regression , 2008 .

[52]  Laurent El Ghaoui,et al.  Robust sketching for multiple square-root LASSO problems , 2014, AISTATS.

[53]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[54]  Cun-Hui Zhang,et al.  Scaled sparse linear regression , 2011, 1104.4595.

[55]  Ben Adcock,et al.  Infinite-Dimensional Compressed Sensing and Function Interpolation , 2015, Foundations of Computational Mathematics.

[56]  Ben Adcock,et al.  Compressed Sensing Approaches for Polynomial Approximation of High-Dimensional Functions , 2017, 1703.06987.

[57]  Xiaoli Gao,et al.  Asymptotic analysis of high-dimensional LAD regression with Lasso , 2016 .

[58]  Srdjan Stankovic,et al.  Missing samples analysis in signals for applications to L-estimation and compressive sensing , 2014, Signal Process..

[59]  Albert Cohen,et al.  High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.

[60]  B. Logan,et al.  Signal recovery and the large sieve , 1992 .

[61]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[62]  Sara van de Geer,et al.  Ecole d'été de probabilités de Saint-Flour XLV , 2016 .

[63]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[64]  Kurt B. Ferreira,et al.  Fault-tolerant linear solvers via selective reliability , 2012, ArXiv.

[65]  Hassan Mansour,et al.  Recovering Compressively Sampled Signals Using Partial Support Information , 2010, IEEE Transactions on Information Theory.

[66]  Jinfeng Xu,et al.  Simultaneous estimation and variable selection in median regression using Lasso-type penalty , 2010, Annals of the Institute of Statistical Mathematics.

[67]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[68]  A. Belloni,et al.  Square-Root Lasso: Pivotal Recovery of Sparse Signals via Conic Programming , 2011 .

[69]  慧 廣瀬 A Mathematical Introduction to Compressive Sensing , 2015 .