Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors

AbstractWe report the use of ultra-short, pulsed-laser annealed Ti/Au contacts to enhance the performance of multilayer MoS2 field effect transistors (FETs) on flexible plastic substrates without thermal damage. An analysis of the temperature distribution, based on finite difference methods, enabled understanding of the compatibility of our picosecond laser annealing for flexible poly(ethylene naphthalate) (PEN) substrates with low thermal budget (< 200 °C). The reduced contact resistance after laser annealing provided a significant improvement in transistor performance including higher peak field-effect mobility (from 24.84 to 44.84 cm2·V−1·s−1), increased output resistance (0.42 MΩ at Vgs − Vth = 20 V, a three-fold increase), a six-fold increase in the self-gain, and decreased sub-threshold swing. Transmission electron microscopy analysis and current-voltage measurements suggested that the reduced contact resistance resulted from the decrease of Schottky barrier width at the MoS2-metal junction. These results demonstrate that selective contact laser annealing is an attractive technology for fabricating low-resistivity metal-semiconductor junctions, providing important implications for the application of high-performance two-dimensional semiconductor FETs in flexible electronics.

[1]  Nicholas V. Annetta,et al.  A Conformal, Bio-Interfaced Class of Silicon Electronics for Mapping Cardiac Electrophysiology , 2010, Science Translational Medicine.

[2]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[3]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[4]  Byung Jin Cho,et al.  Comparative study of chemically synthesized and exfoliated multilayer MoS2 field-effect transistors , 2013, 1301.4527.

[5]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[6]  Wei Liu,et al.  A computational study of metal-contacts to beyond-graphene 2D semiconductor materials , 2012, 2012 International Electron Devices Meeting.

[7]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[8]  R. F. Wood,et al.  Macroscopic theory of pulsed laser annealing , 1980 .

[9]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[10]  Hyuk‐Jun Kwon,et al.  Low‐Power Flexible Organic Light‐Emitting Diode Display Device , 2011, Advanced materials.

[11]  K. Komvopoulos,et al.  Surface nanostructuring by nano-/femtosecond laser-assisted scanning force microscopy , 2005 .

[12]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[13]  Barry Luther-Davies,et al.  Picosecond high-repetition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses , 2005 .

[14]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[15]  M. Kitada,et al.  Amorphous phase formation in Ti/Ni bilayer thin films by solid-state diffusion , 1989 .

[16]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[17]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[18]  E. Williams,et al.  Atomic structure of graphene on SiO2. , 2007, Nano letters.

[19]  D. Teer,et al.  New solid lubricant coatings , 2001 .

[20]  S. U. Campisano,et al.  A melting model for pulsing‐laser annealing of implanted semiconductors , 1979 .

[21]  D. Schroder Semiconductor Material and Device Characterization, 3rd Edition , 2005 .

[22]  P. Ye,et al.  Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.

[23]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[24]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[25]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[26]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[27]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[28]  Plasmon-enhanced absorption by optical phonons in metal-dielectric composites , 2001 .

[29]  Woo-Seok Cho,et al.  Thermal and Electronic Properties of Exfoliated Metal Chalcogenides , 2010 .

[30]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[31]  Hidetoshi Miura,et al.  Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. , 2008, ACS nano.

[32]  A. Bell Review and analysis of laser annealing , 1979 .

[33]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[34]  Baerbel Rethfeld,et al.  Theory of ultrashort laser pulse interaction with a metal , 1997, Other Conferences.

[35]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[36]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[37]  Mischa Bonn,et al.  Ultrafast electron dynamics at metal surfaces: Competition between electron-phonon coupling and hot-electron transport , 2000 .