A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces

We consider a wide class of iterative methods arising in numerical mathematics and optimization that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau, we present a simple modification of these methods that makes them strongly convergent without additional assumptions. Several applications are discussed.

[1]  B. Martinet,et al.  R'egularisation d''in'equations variationnelles par approximations successives , 1970 .

[2]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[3]  P. L. Combettes Construction d'un point fixe commun à une famille de contractions fermes , 1995 .

[4]  F. Browder Convergence theorems for sequences of nonlinear operators in Banach spaces , 1967 .

[5]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[6]  J. L. Webb OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .

[7]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[8]  H BauschkeHeinz,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996 .

[9]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[10]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[11]  H. Brezis,et al.  Produits infinis de resolvantes , 1978 .

[12]  Krzysztof C. Kiwiel,et al.  Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings , 1997, SIAM J. Optim..

[13]  Benar Fux Svaiter,et al.  Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..

[14]  S. Maruster,et al.  The solution by iteration of nonlinear equations in Hilbert spaces , 1977 .

[15]  Jonathan M. Borwein,et al.  A Survey of Examples of Convex Functions and Classifications of Normed Spaces , 1994 .

[16]  J. Borwein,et al.  Krasnoselski-Mann Iterations in Normed Spaces , 1992, Canadian Mathematical Bulletin.

[17]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[18]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[19]  Heinz H. Bauschke A norm convergence result on random products of relaxed projections in Hilbert space , 1995 .

[20]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[21]  W. Petryshyn,et al.  Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings , 1973 .

[22]  Ioannis K. Argyros,et al.  The asymptotic mesh independence principle for inexact Newton-Galerkin-like methods , 1997 .

[23]  E. Allgower,et al.  A mesh-independence principle for operator equations and their discretizations , 1986 .

[24]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[25]  William R. Zame,et al.  Chapter 34 Equilibrium theory in infinite dimensional spaces , 1991 .

[26]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[27]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[28]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[29]  Ioannis K. Argyros A mesh-independence principle for operators equations and the Steffensen method , 1997 .

[30]  W. G. Dotson,et al.  On the Mann iterative process , 1970 .

[31]  Patrick L. Combettes,et al.  Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..

[32]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .

[33]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .