A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces
暂无分享,去创建一个
[1] B. Martinet,et al. R'egularisation d''in'equations variationnelles par approximations successives , 1970 .
[2] Boris Polyak,et al. The method of projections for finding the common point of convex sets , 1967 .
[3] P. L. Combettes. Construction d'un point fixe commun à une famille de contractions fermes , 1995 .
[4] F. Browder. Convergence theorems for sequences of nonlinear operators in Banach spaces , 1967 .
[5] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[6] J. L. Webb. OPERATEURS MAXIMAUX MONOTONES ET SEMI‐GROUPES DE CONTRACTIONS DANS LES ESPACES DE HILBERT , 1974 .
[7] P. L. Combettes,et al. The Convex Feasibility Problem in Image Recovery , 1996 .
[8] H BauschkeHeinz,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996 .
[9] Osman Güer. On the convergence of the proximal point algorithm for convex minimization , 1991 .
[10] W. A. Kirk,et al. Topics in Metric Fixed Point Theory , 1990 .
[11] H. Brezis,et al. Produits infinis de resolvantes , 1978 .
[12] Krzysztof C. Kiwiel,et al. Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings , 1997, SIAM J. Optim..
[13] Benar Fux Svaiter,et al. Forcing strong convergence of proximal point iterations in a Hilbert space , 2000, Math. Program..
[14] S. Maruster,et al. The solution by iteration of nonlinear equations in Hilbert spaces , 1977 .
[15] Jonathan M. Borwein,et al. A Survey of Examples of Convex Functions and Classifications of Normed Spaces , 1994 .
[16] J. Borwein,et al. Krasnoselski-Mann Iterations in Normed Spaces , 1992, Canadian Mathematical Bulletin.
[17] Hector O. Fattorini,et al. Infinite Dimensional Optimization and Control Theory: References , 1999 .
[18] B. Martinet. Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .
[19] Heinz H. Bauschke. A norm convergence result on random products of relaxed projections in Hilbert space , 1995 .
[20] C. DeWitt-Morette,et al. Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .
[21] W. Petryshyn,et al. Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings , 1973 .
[22] Ioannis K. Argyros,et al. The asymptotic mesh independence principle for inexact Newton-Galerkin-like methods , 1997 .
[23] E. Allgower,et al. A mesh-independence principle for operator equations and their discretizations , 1986 .
[24] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[25] William R. Zame,et al. Chapter 34 Equilibrium theory in infinite dimensional spaces , 1991 .
[26] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[27] J. Lindenstrauss,et al. An example concerning fixed points , 1975 .
[28] Boris Polyak. Minimization of unsmooth functionals , 1969 .
[29] Ioannis K. Argyros. A mesh-independence principle for operators equations and the Steffensen method , 1997 .
[30] W. G. Dotson,et al. On the Mann iterative process , 1970 .
[31] Patrick L. Combettes,et al. Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..
[32] Heinz H. Bauschke,et al. The method of cyclic projections for closed convex sets in Hilbert space , 1997 .
[33] P. L. Combettes,et al. Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .