The ε-t-Net Problem

We study a natural generalization of the classical $\epsilon$-net problem (Haussler--Welzl 1987), which we call the "$\epsilon$-$t$-net problem": Given a hypergraph on $n$ vertices and parameters $t$ and $\epsilon\geq \frac t n$, find a minimum-sized family $S$ of $t$-element subsets of vertices such that each hyperedge of size at least $\epsilon n$ contains a set in $S$. When $t=1$, this corresponds to the $\epsilon$-net problem. We prove that any sufficiently large hypergraph with VC-dimension $d$ admits an $\epsilon$-$t$-net of size $O(\frac{ (1+\log t)d}{\epsilon} \log \frac{1}{\epsilon})$. For some families of geometrically-defined hypergraphs (such as the dual hypergraph of regions with linear union complexity), we prove the existence of $O(\frac{1}{\epsilon})$-sized $\epsilon$-$t$-nets. We also present an explicit construction of $\epsilon$-$t$-nets (including $\epsilon$-nets) for hypergraphs with bounded VC-dimension. In comparison to previous constructions for the special case of $\epsilon$-nets (i.e., for $t=1$), it does not rely on advanced derandomization techniques. To this end we introduce a variant of the notion of VC-dimension which is of independent interest.

[1]  C. L. Liu,et al.  Introduction to Combinatorial Mathematics. , 1971 .

[2]  Chris Calabro,et al.  The exponential complexity of satisfiability problems , 2009 .

[3]  Paul Seymour,et al.  A survey of $\chi$-boundedness , 2018, 1812.07500.

[4]  Rom Pinchasi,et al.  On coloring points with respect to rectangles , 2013, J. Comb. Theory, Ser. A.

[5]  Balázs Keszegh,et al.  Coloring Delaunay-Edges and their Generalizations , 2018, ArXiv.

[6]  Nabil H. Mustafa,et al.  Epsilon-Approximations & Epsilon-Nets , 2017, 1702.03676.

[7]  Noga Alon,et al.  Dominating sets in k-majority tournaments , 2006, J. Comb. Theory, Ser. B.

[8]  Balázs Keszegh Coloring Intersection Hypergraphs of Pseudo-Disks , 2020, Discret. Comput. Geom..

[9]  Timothy M. Chan Improved Deterministic Algorithms for Linear Programming in Low Dimensions , 2016, SODA.

[10]  M. Sharir,et al.  State of the Union (of geometric objects) , 2008 .

[11]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[12]  Stanley Wagon,et al.  A bound on the chromatic number of graphs without certain induced subgraphs , 1980, J. Comb. Theory, Ser. B.

[13]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[14]  Michael T. Goodrich,et al.  Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..

[15]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[16]  Emo Welzl,et al.  Partition trees for triangle counting and other range searching problems , 1988, SCG '88.

[17]  S. Shelah A combinatorial problem; stability and order for models and theories in infinitary languages. , 1972 .

[18]  Norbert Sauer,et al.  On the Density of Families of Sets , 1972, J. Comb. Theory A.

[19]  Bernard Chazelle,et al.  On linear-time deterministic algorithms for optimization problems in fixed dimension , 1996, SODA '93.

[20]  Dror Rawitz,et al.  Hitting sets when the VC-dimension is small , 2005, Inf. Process. Lett..

[21]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[22]  Gustavus J. Simmons,et al.  How to (Really) Share a Secret , 1988, CRYPTO.

[23]  János Pach,et al.  Tight lower bounds for the size of epsilon-nets , 2012 .

[24]  Tillmann Miltzow,et al.  On the VC-dimension of half-spaces with respect to convex sets , 2019 .

[25]  Nabil H. Mustafa,et al.  $$\varepsilon $$ε-Mnets: Hitting Geometric Set Systems with Subsets , 2017, Discret. Comput. Geom..

[26]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[27]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[28]  Micha Sharir,et al.  Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..

[29]  Nabil H. Mustafa,et al.  Shallow Packings, Semialgebraic Set Systems, Macbeath Regions, and Polynomial Partitioning , 2019, Discret. Comput. Geom..

[30]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[31]  Guilherme Dias da Fonseca,et al.  Polytope approximation and the Mahler volume , 2012, SODA.

[32]  Tamir Tassa,et al.  Hierarchical Threshold Secret Sharing , 2004, Journal of Cryptology.

[33]  Yuval Rabani,et al.  Explicit Construction of a Small Epsilon-Net for Linear Threshold Functions , 2010, SIAM J. Comput..

[34]  Jirí Matousek,et al.  Approximations and optimal geometric divide-and-conquer , 1991, STOC '91.

[35]  Rajiv Raman,et al.  Planar Support for Non-piercing Regions and Applications , 2018, ESA.

[36]  Shakhar Smorodinsky,et al.  Conflict-Free Coloring of Intersection Graphs of Geometric Objects , 2020, Discret. Comput. Geom..

[37]  Boris Aronov,et al.  On Pseudo-disk Hypergraphs , 2021, Comput. Geom..

[38]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.