Mechatronic Behavior Analysis of a Customized Manufacturing Cell

Analyzing the mechatronic behavior of a manufacturing cell used in a customized manufacturing process is a difficult task with numerous obstacles. Therefore, a method that can be easily used for developing and optimizing a customized manufacturing cell, i.e., universal contacting module (UCM) cell, for the in-circuit testing of electronic modules is desired. In this paper, we present a convenient method using multi-domain simulation tools for analyzing the mechatronic behavior of the UCM cell. The UCM cell, which consists of mechatronic components such as a six-axis industrial robot and conveyor systems, were successfully modeled, simulated, and validated under several payloads. This work also presents a modeling procedure that can be applied by system engineers with a basic background in control systems for analyzing the mechatronic behavior of manufacturing cell components.