In silico models of cancer

Cancer is a complex disease that involves multiple types of biological interactions across diverse physical, temporal, and biological scales. This complexity presents substantial challenges for the characterization of cancer biology, and motivates the study of cancer in the context of molecular, cellular, and physiological systems. Computational models of cancer are being developed to aid both biological discovery and clinical medicine. The development of these in silico models is facilitated by rapidly advancing experimental and analytical tools that generate information‐rich, high‐throughput biological data. Statistical models of cancer at the genomic, transcriptomic, and pathway levels have proven effective in developing diagnostic and prognostic molecular signatures, as well as in identifying perturbed pathways. Statistically inferred network models can prove useful in settings where data overfitting can be avoided, and provide an important means for biological discovery. Mechanistically based signaling and metabolic models that apply a priori knowledge of biochemical processes derived from experiments can also be reconstructed where data are available, and can provide insight and predictive ability regarding the behavior of these systems. At longer length scales, continuum and agent‐based models of the tumor microenvironment and other tissue‐level interactions enable modeling of cancer cell populations and tumor progression. Even though cancer has been among the most‐studied human diseases using systems approaches, significant challenges remain before the enormous potential of in silico cancer biology can be fully realized. Copyright © 2009 John Wiley & Sons, Inc.

[1]  C. Nordling A New Theory on the Cancer-inducing Mechanism , 1953, British Journal of Cancer.

[2]  Nordling Co A New Theory on the Cancer-inducing Mechanism , 1953 .

[3]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[4]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[5]  G. Evan,et al.  Cooperative interaction between c-myc and bcl-2 proto-oncogenes , 1992, Nature.

[6]  A. Lloyd,et al.  Cooperating oncogenes converge to regulate cyclin/cdk complexes. , 1997, Genes & development.

[7]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[8]  D. Rew Tumour biology, chaos and non-linear dynamics. , 1999, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[9]  M. Chaplain,et al.  Does breast cancer exist in a state of chaos? , 1999, European journal of cancer.

[10]  A. Świerniak,et al.  Is repopulation of the tumour cells during radiotherapy doubled during treatment gaps , 1999 .

[11]  D. Fell,et al.  Differential feedback regulation of the MAPK cascade underlies the quantitative differences in EGF and NGF signalling in PC12 cells , 2000, FEBS letters.

[12]  Philipp Bucher,et al.  The Eukaryotic Promoter Database (EPD) , 2000, Nucleic Acids Res..

[13]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[14]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[15]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[16]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Preziosi,et al.  Modelling and mathematical problems related to tumor evolution and its interaction with the immune system , 2000 .

[18]  S Torquato,et al.  Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. , 2000, Journal of theoretical biology.

[19]  Rafal Tarnawski,et al.  Repopulation of Tumour Cells during Radiotherapy Is Doubled during Treatment Gaps , 2000 .

[20]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[21]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[22]  Alfonso Valencia,et al.  A hierarchical unsupervised growing neural network for clustering gene expression patterns , 2001, Bioinform..

[23]  M. Ringnér,et al.  Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks , 2001, Nature Medicine.

[24]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[25]  E. T. Gawlinski,et al.  A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism , 2001 .

[26]  David Botstein,et al.  The Stanford Microarray Database , 2001, Nucleic Acids Res..

[27]  H. Byrne,et al.  The role of cell-cell interactions in a two-phase model for avascular tumour growth , 2002, Journal of mathematical biology.

[28]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[29]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[30]  J. Workman,et al.  The complexity of chromatin remodeling and its links to cancer. , 2002, Biochimica et biophysica acta.

[31]  Thomas S Deisboeck,et al.  Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. , 2002, Journal of theoretical biology.

[32]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[33]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[34]  Edward R. Dougherty,et al.  Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks , 2002, Bioinform..

[35]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[36]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[37]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[38]  Susumu Goto,et al.  The KEGG databases at GenomeNet , 2002, Nucleic Acids Res..

[39]  Javier Benitez,et al.  Cancer Epigenetics and Methylation , 2002, Science.

[40]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[41]  Upinder S. Bhalla,et al.  The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks , 2003, Bioinform..

[42]  D. Barrell,et al.  The Gene Ontology Annotation (GOA) project: implementation of GO in SWISS-PROT, TrEMBL, and InterPro. , 2003, Genome research.

[43]  Yusuke Nakamura,et al.  Prediction of response to imatinib by cDNA microarray analysis. , 2003, Seminars in hematology.

[44]  L. Preziosi,et al.  Modelling Solid Tumor Growth Using the Theory of Mixtures , 2001, Mathematical medicine and biology : a journal of the IMA.

[45]  Thomas S Deisboeck,et al.  The impact of "search precision" in an agent-based tumor model. , 2003, Journal of theoretical biology.

[46]  P. Maini,et al.  A cellular automaton model for tumour growth in inhomogeneous environment. , 2003, Journal of theoretical biology.

[47]  Yu Zong Chen,et al.  KDBI: Kinetic Data of Bio-molecular Interactions database , 2003, Nucleic Acids Res..

[48]  Daniel Segrè,et al.  From annotated genomes to metabolic flux models and kinetic parameter fitting. , 2003, Omics : a journal of integrative biology.

[49]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[50]  B. Palsson,et al.  Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies. , 2004, Biophysical journal.

[51]  Michael L. Bittner,et al.  Growing genetic regulatory networks from seed genes , 2004, Bioinform..

[52]  H. Moses,et al.  Stromal fibroblasts in cancer initiation and progression , 2004, Nature.

[53]  Markus J. Herrgård,et al.  Integrating high-throughput and computational data elucidates bacterial networks , 2004, Nature.

[54]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[55]  Daniel Q. Naiman,et al.  Classifying Gene Expression Profiles from Pairwise mRNA Comparisons , 2004, Statistical applications in genetics and molecular biology.

[56]  Rameen Beroukhim,et al.  Molecular characterization of the tumor microenvironment in breast cancer. , 2004, Cancer cell.

[57]  Emily Dimmer,et al.  The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology , 2004, Nucleic Acids Res..

[58]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[59]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[60]  J. Stec,et al.  Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. , 2004, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[61]  S. Spencer,et al.  An ordinary differential equation model for the multistep transformation to cancer. , 2004, Journal of theoretical biology.

[62]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[63]  Razvan C. Bunescu,et al.  Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome , 2005, Genome Biology.

[64]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[65]  Harvey J. Greenberg,et al.  Reconstruction and Functional Characterization of the Human Mitochondrial Metabolic Network Based on Proteomic and Biochemical Data* , 2004, Journal of Biological Chemistry.

[66]  R. Tibshirani,et al.  Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. , 2004, The New England journal of medicine.

[67]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[68]  Paul P. Wang,et al.  Advances to Bayesian network inference for generating causal networks from observational biological data , 2004, Bioinform..

[69]  Jason A. Papin,et al.  The JAK-STAT signaling network in the human B-cell: an extreme signaling pathway analysis. , 2004, Biophysical journal.

[70]  D L S McElwain,et al.  A history of the study of solid tumour growth: The contribution of mathematical modelling , 2004, Bulletin of mathematical biology.

[71]  Jason A. Papin,et al.  Topological analysis of mass-balanced signaling networks: a framework to obtain network properties including crosstalk. , 2004, Journal of theoretical biology.

[72]  D Ambrosi,et al.  The role of stress in the growth of a multicell spheroid , 2004, Journal of mathematical biology.

[73]  P. Maini,et al.  A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. , 2004, Journal of theoretical biology.

[74]  Michael E Phelps,et al.  Systems Biology and New Technologies Enable Predictive and Preventative Medicine , 2004, Science.

[75]  R. Christopher,et al.  Data‐Driven Computer Simulation of Human Cancer Cell , 2004, Annals of the New York Academy of Sciences.

[76]  S. Lowe,et al.  Intrinsic tumour suppression , 2004, Nature.

[77]  S. Horvath,et al.  Global histone modification patterns predict risk of prostate cancer recurrence , 2005, Nature.

[78]  B. Palsson,et al.  Candidate Metabolic Network States in Human Mitochondria , 2005, Journal of Biological Chemistry.

[79]  Adam A. Margolin,et al.  Reverse engineering of regulatory networks in human B cells , 2005, Nature Genetics.

[80]  P. Maini,et al.  The role of acidity in solid tumour growth and invasion. , 2005, Journal of theoretical biology.

[81]  Li Yu,et al.  [DNA methylation and cancer]. , 2005, Zhonghua nei ke za zhi.

[82]  Aniruddha Datta,et al.  Intervention in context-sensitive probabilistic Boolean networks , 2005, Bioinform..

[83]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[84]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[85]  A. Anderson,et al.  A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. , 2005, Mathematical medicine and biology : a journal of the IMA.

[86]  David Baltimore,et al.  Achieving stability of lipopolysaccharide-induced NF-kappaB activation. , 2005, Science.

[87]  Lihua Liu,et al.  TRED: a Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies , 2004, Nucleic Acids Res..

[88]  A. Chinnaiyan,et al.  Integrative analysis of the cancer transcriptome , 2005, Nature Genetics.

[89]  Lennart Martens,et al.  PRIDE: The proteomics identifications database , 2005, Proteomics.

[90]  Miguel A Esteban,et al.  HIF, a missing link between metabolism and cancer , 2005, Nature Medicine.

[91]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[92]  R. Gillies,et al.  Hypoxia-Inducible Factor-1α and the Glycolytic Phenotype in Tumors , 2005 .

[93]  David J. Reiss,et al.  The Gaggle: An open-source software system for integrating bioinformatics software and data sources , 2006, BMC Bioinformatics.

[94]  Richard Bonneau,et al.  The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo , 2006, Genome Biology.

[95]  Korbinian Strimmer,et al.  An empirical Bayes approach to inferring large-scale gene association networks , 2005, Bioinform..

[96]  D. Lauffenburger,et al.  A Systems Model of Signaling Identifies a Molecular Basis Set for Cytokine-Induced Apoptosis , 2005, Science.

[97]  Richard Gordon,et al.  Modeling the Effect of Tumor Size in Early Breast Cancer , 2005, Annals of surgery.

[98]  Yiling Lu,et al.  Exploiting the PI3K/AKT Pathway for Cancer Drug Discovery , 2005, Nature Reviews Drug Discovery.

[99]  Helen M. Byrne,et al.  A Multiple Scale Model for Tumor Growth , 2005, Multiscale Model. Simul..

[100]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[101]  D. Baltimore,et al.  Achieving Stability of Lipopolysaccharide-Induced NF-κB Activation , 2005, Science.

[102]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[103]  Patrick Lambrix,et al.  Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX , 2005, Bioinform..

[104]  Yi Tang,et al.  Extracellular matrix metalloproteinase inducer stimulates tumor angiogenesis by elevating vascular endothelial cell growth factor and matrix metalloproteinases. , 2005, Cancer research.

[105]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[106]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[107]  C. Francke,et al.  Reconstructing the metabolic network of a bacterium from its genome. , 2005, Trends in microbiology.

[108]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[109]  Daniel Q. Naiman,et al.  Simple decision rules for classifying human cancers from gene expression profiles , 2005, Bioinform..

[110]  John Condeelis,et al.  Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis , 2006, Cell.

[111]  Alexander R. A. Anderson,et al.  Computational Methods and Results for Structured Multiscale Models of Tumor Invasion , 2005, Multiscale Model. Simul..

[112]  Diego di Bernardo,et al.  Inference of gene regulatory networks and compound mode of action from time course gene expression profiles , 2006, Bioinform..

[113]  C. Blank,et al.  Immune resistance orchestrated by the tumor microenvironment , 2006, Immunological reviews.

[114]  Raghu Kalluri,et al.  Fibroblasts in cancer , 2006, Nature Reviews Cancer.

[115]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes. , 2004, Nucleic acids research.

[116]  L. D. de Pillis,et al.  A cellular automata model of tumor-immune system interactions. , 2006, Journal of theoretical biology.

[117]  Bernhard O. Palsson,et al.  Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems , 2006, PLoS Comput. Biol..

[118]  Arno Lukas,et al.  Characterization of protein-interaction networks in tumors , 2007, BMC Bioinformatics.

[119]  John Gould,et al.  Toward the automated generation of genome-scale metabolic networks in the SEED , 2007, BMC Bioinformatics.

[120]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[121]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[122]  J. Pollard,et al.  Distinct role of macrophages in different tumor microenvironments. , 2006, Cancer research.

[123]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[124]  Alissa M. Weaver,et al.  Tumor Morphology and Phenotypic Evolution Driven by Selective Pressure from the Microenvironment , 2006, Cell.

[125]  H. Steen,et al.  A stochastic model of cancer initiation including a bystander effect. , 2006, Journal of theoretical biology.

[126]  Andrea Bild,et al.  Gene Expression Profiles of Multiple Breast Cancer Phenotypes and Response to Neoadjuvant Chemotherapy , 2006, Clinical Cancer Research.

[127]  T. Robak,et al.  Purine nucleoside analogs as immunosuppressive and antineoplastic agents: mechanism of action and clinical activity. , 2006, Current medicinal chemistry.

[128]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[129]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[130]  Adam M. Feist,et al.  Modeling methanogenesis with a genome‐scale metabolic reconstruction of Methanosarcina barkeri , 2006 .

[131]  S. Sivaloganathan,et al.  Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. , 2006, Journal of theoretical biology.

[132]  T. Gajewski,et al.  Immune suppression in the tumor microenvironment. , 2006, Journal of immunotherapy.

[133]  Roland Eils,et al.  Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[134]  Jacky L. Snoep,et al.  BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems , 2005, Nucleic Acids Res..

[135]  G. Parmigiani,et al.  The Consensus Coding Sequences of Human Breast and Colorectal Cancers , 2006, Science.

[136]  Caroline C. Friedel,et al.  Reliable gene signatures for microarray classification: assessment of stability and performance , 2006, Bioinform..

[137]  B. Mayer,et al.  Transforming omics data into context: Bioinformatics on genomics and proteomics raw data , 2006, Electrophoresis.

[138]  Rolf Apweiler,et al.  Genome Reviews: standardizing content and representation of information about complete genomes. , 2006, Omics : a journal of integrative biology.

[139]  J. Foekens,et al.  Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[140]  John Quackenbush Microarray analysis and tumor classification. , 2006, The New England journal of medicine.

[141]  司履生 Cancer epigenetics , 2006 .

[142]  S. McDougall,et al.  Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. , 2006, Journal of theoretical biology.

[143]  I. Ellis,et al.  A gene-expression signature to predict survival in breast cancer across independent data sets , 2007, Oncogene.

[144]  Reinhard Laubenbacher,et al.  Comparison of Reverse‐Engineering Methods Using an in Silico Network , 2007, Annals of the New York Academy of Sciences.

[145]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[146]  K. Alitalo,et al.  Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. , 2007, Cancer research.

[147]  Charles Auffray,et al.  Protein subnetwork markers improve prediction of cancer outcome , 2007, Molecular systems biology.

[148]  P. Maini,et al.  Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer , 2007, Proceedings of the National Academy of Sciences.

[149]  M. Hung,et al.  The role of the VEGF-C/VEGFR-3 axis in cancer progression , 2006, British Journal of Cancer.

[150]  K. Alitalo,et al.  VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. , 2007, Blood.

[151]  J. Houghton,et al.  Tumor microenvironment: The role of the tumor stroma in cancer , 2007, Journal of cellular biochemistry.

[152]  Andrea Califano,et al.  Theory and Limitations of Genetic Network Inference from Microarray Data , 2007, Annals of the New York Academy of Sciences.

[153]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[154]  Gabriele Ausiello,et al.  MINT: the Molecular INTeraction database , 2006, Nucleic Acids Res..

[155]  T. Deisboeck,et al.  Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. , 2006, Journal of theoretical biology.

[156]  L. Hood,et al.  Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas , 2007, Proceedings of the National Academy of Sciences.

[157]  Jill P. Mesirov,et al.  GSEA-P: a desktop application for Gene Set Enrichment Analysis , 2007, Bioinform..

[158]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[159]  Arne Traulsen,et al.  Stochastic Dynamics of Hematopoietic Tumor Stem Cells , 2007, Cell cycle.

[160]  P. Maini,et al.  Metabolic changes during carcinogenesis: potential impact on invasiveness. , 2007, Journal of theoretical biology.

[161]  Ian T. Paulsen,et al.  TransportDB: a comprehensive database resource for cytoplasmic membrane transport systems and outer membrane channels , 2006, Nucleic Acids Res..

[162]  G. Rabinovich,et al.  Dynamic cross-talk between tumor and immune cells in orchestrating the immunosuppressive network at the tumor microenvironment , 2007, Cancer Immunology, Immunotherapy.

[163]  J. Lowengrub,et al.  Nonlinear simulation of the effect of microenvironment on tumor growth. , 2007, Journal of theoretical biology.

[164]  Claudio Altafini,et al.  Comparing association network algorithms for reverse engineering of large-scale gene regulatory networks: synthetic versus real data , 2007, Bioinform..

[165]  Luonan Chen,et al.  Inferring transcriptional regulatory networks from high-throughput data , 2007, Bioinform..

[166]  M. Esteller Cancer epigenomics: DNA methylomes and histone-modification maps , 2007, Nature Reviews Genetics.

[167]  O. Demin,et al.  The Edinburgh human metabolic network reconstruction and its functional analysis , 2007, Molecular systems biology.

[168]  Yi Jiang,et al.  A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. , 2007, Biophysical journal.

[169]  Donald Geman,et al.  Large-scale integration of cancer microarray data identifies a robust common cancer signature , 2007, BMC Bioinformatics.

[170]  S Gail Eckhardt,et al.  NMR-based metabolomics: translational application and treatment of cancer. , 2007, Current opinion in molecular therapeutics.

[171]  Tatiana A. Tatusova,et al.  Entrez Gene: gene-centered information at NCBI , 2004, Nucleic Acids Res..

[172]  Monica L. Mo,et al.  Global reconstruction of the human metabolic network based on genomic and bibliomic data , 2007, Proceedings of the National Academy of Sciences.

[173]  N. Price,et al.  Biochemical and statistical network models for systems biology. , 2007, Current opinion in biotechnology.

[174]  John T. Wei,et al.  Integrative molecular concept modeling of prostate cancer progression , 2007, Nature Genetics.

[175]  Jeremy J. W. Chen,et al.  A five-gene signature and clinical outcome in non-small-cell lung cancer. , 2007, The New England journal of medicine.

[176]  J. Nevins,et al.  Mining gene expression profiles: expression signatures as cancer phenotypes , 2007, Nature Reviews Genetics.

[177]  E. Liu,et al.  Higher order structure in the cancer transcriptome and systems medicine , 2007, Molecular systems biology.

[178]  M. Mann,et al.  Is Proteomics the New Genomics? , 2007, Cell.

[179]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[180]  M. Ringnér,et al.  Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity , 2007, Proceedings of the National Academy of Sciences.

[181]  Douglas A. Lauffenburger,et al.  Common effector processing mediates cell-specific responses to stimuli , 2007, Nature.

[182]  Yi Zhang,et al.  Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer , 2007, BMC Cancer.

[183]  I. Tomlinson,et al.  A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt. , 2007, Journal of theoretical biology.

[184]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[185]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[186]  Lennart Martens,et al.  The minimum information about a proteomics experiment (MIAPE) , 2007, Nature Biotechnology.

[187]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[188]  Jason A. Papin,et al.  Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major , 2008, Molecular systems biology.

[189]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[190]  John W M Martens,et al.  Subtypes of breast cancer show preferential site of relapse. , 2008, Cancer research.

[191]  D. Lauffenburger,et al.  Multipathway Model Enables Prediction of Kinase Inhibitor Cross-Talk Effects on Migration of Her2-Overexpressing Mammary Epithelial Cells , 2008, Molecular Pharmacology.

[192]  Su-Cheng Huang,et al.  Cytokine regulation networks in the cancer microenvironment. , 2008, Frontiers in bioscience : a journal and virtual library.

[193]  B. Coe,et al.  Evolving strategies for global gene expression analysis of cancer , 2008, Journal of cellular physiology.

[194]  N. Normanno,et al.  The role of the EGFR signaling in tumor microenvironment , 2008, Journal of cellular physiology.

[195]  Markus J. Herrgård,et al.  A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology , 2008, Nature Biotechnology.

[196]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[197]  Debashis Ghosh,et al.  Pathway analysis reveals functional convergence of gene expression profiles in breast cancer , 2008 .

[198]  Nigel W. Hardy,et al.  Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project , 2008, Nature Biotechnology.

[199]  Markus J. Herrgård,et al.  Network-based prediction of human tissue-specific metabolism , 2008, Nature Biotechnology.

[200]  V. Quaranta,et al.  Invasion emerges from cancer cell adaptation to competitive microenvironments: quantitative predictions from multiscale mathematical models. , 2008, Seminars in Cancer Biology.

[201]  Alexander Schliep,et al.  Clustering cancer gene expression data: a comparative study , 2008, BMC Bioinformatics.

[202]  C. Galmarini,et al.  Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. , 2008, Current medicinal chemistry.

[203]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[204]  Doheon Lee,et al.  Inferring Pathway Activity toward Precise Disease Classification , 2008, PLoS Comput. Biol..

[205]  Krin A. Kay,et al.  The implications of human metabolic network topology for disease comorbidity , 2008, Proceedings of the National Academy of Sciences.

[206]  P. Vineis,et al.  A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. , 2008, Journal of theoretical biology.

[207]  I. Goryanin,et al.  Human metabolic network reconstruction and its impact on drug discovery and development. , 2008, Drug discovery today.

[208]  Richard Bonneau Learning biological networks: from modules to dynamics. , 2008, Nature chemical biology.

[209]  E. Mardis The impact of next-generation sequencing technology on genetics. , 2008, Trends in genetics : TIG.

[210]  A. Yakovlev,et al.  Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype , 2008, Nature.

[211]  D. Sabatini,et al.  Cancer Cell Metabolism: Warburg and Beyond , 2008, Cell.

[212]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[213]  Julie M. Sahalie,et al.  An experimentally derived confidence score for binary protein-protein interactions , 2008, Nature Methods.

[214]  Gavin MacBeath,et al.  Linear combinations of docking affinities explain quantitative differences in RTK signaling , 2009, Molecular systems biology.

[215]  Inyoul Y. Lee,et al.  CHAPTER 6 – Systems Biology and the Emergence of Systems Medicine , 2009 .

[216]  M. Vidal,et al.  Literature-curated protein interaction , 2009 .

[217]  Thomas S Deisboeck,et al.  In silico cancer modeling: is it ready for prime time? , 2009, Nature Clinical Practice Oncology.

[218]  Isabel M. Tienda-Luna,et al.  Reverse engineering gene regulatory networks , 2009, IEEE Signal Processing Magazine.

[219]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[220]  A. Barabasi,et al.  An empirical framework for binary interactome mapping , 2008, Nature Methods.

[221]  Lennart Martens,et al.  The Proteomics Identifications database: 2010 update , 2009, Nucleic Acids Res..

[222]  I. Harris,et al.  Cancer cell metabolism. , 2011, Cold Spring Harbor symposia on quantitative biology.