The Quantum Nature of Color Perception: Uncertainty Relations for Chromatic Opposition

In this paper, we provide an overview on the foundation and first results of a very recent quantum theory of color perception, together with novel results about uncertainty relations for chromatic opposition. The major inspiration for this model is the 1974 remarkable work by H.L. Resnikoff, who had the idea to give up the analysis of the space of perceived colors through metameric classes of spectra in favor of the study of its algebraic properties. This strategy permitted to reveal the importance of hyperbolic geometry in colorimetry. Starting from these premises, we show how Resnikoff’s construction can be extended to a geometrically rich quantum framework, where the concepts of achromatic color, hue and saturation can be rigorously defined. Moreover, the analysis of pure and mixed quantum chromatic states leads to a deep understanding of chromatic opposition and its role in the encoding of visual signals. We complete our paper by proving the existence of uncertainty relations for the degree of chromatic opposition, thus providing a theoretical confirmation of the quantum nature of color perception.

[1]  Michel Berthier,et al.  The relativity of color perception , 2020, Journal of Mathematical Psychology.

[2]  Isaac Newton,et al.  New theory about light and colors , 2014 .

[3]  E. Provenzi On the issue of linearity in chromatic induction by a uniform background , 2020 .

[4]  Rajeev Ramanath,et al.  Color Perception , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[5]  S. Sutherland Eye, brain and vision , 1993, Nature.

[6]  Julie Delon,et al.  On the second order spatiochromatic structure of natural images , 2016, Vision Research.

[7]  Joost van de Weijer,et al.  Color in Computer Vision: Fundamentals and Applications , 2012 .

[8]  Ron Levie,et al.  Uncertainty principles and optimally sparse wavelet transforms , 2017, Applied and Computational Harmonic Analysis.

[9]  H. Weyl Quantenmechanik und Gruppentheorie , 1927 .

[10]  H. Bastian Sensation and Perception.—I , 1869, Nature.

[11]  Naoya Yokoyama,et al.  Neural Coding of Color , 2004 .

[12]  Valérie Garcin,et al.  Origins of Hyperbolicity in Color Perception , 2020, J. Imaging.

[13]  Isaac Sir Newton Opticks, or, A treatise of the reflections, refractions, inflections & colours of light , 1933 .

[14]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[15]  E. Provenzi A differential geometry model for the perceived colors space , 2016 .

[16]  W. Floyd,et al.  HYPERBOLIC GEOMETRY , 1996 .

[17]  J. Baez Division Algebras and Quantum Theory , 2011, 1101.5690.

[18]  K. Mccrimmon A Taste of Jordan Algebras , 2003 .

[19]  Clyde L. Hardin,et al.  Color for Philosophers: Unweaving the Rainbow , 1988 .

[20]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[21]  Abhay Ashtekar,et al.  Geometry in Color Perception , 1999 .

[22]  M. Berthier Geometry of color perception. Part 2: perceived colors from real quantum states and Hering’s rebit , 2020, Journal of mathematical neuroscience.

[23]  John von Neumann,et al.  Mathematical Foundations of Quantum Mechanics: New Edition , 2018 .

[24]  T. Heinosaari,et al.  The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement , 2012 .

[25]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[26]  H. L. Resnikoff Differential geometry and color perception , 1974 .

[27]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[28]  B. Esser Density Matrix Theory and Applications , 1998 .

[29]  E. Jackson Opticks: or a treatise of the reflections, refractions, inflections and colours of light. , 1932 .

[30]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[31]  Gérard G. Emch,et al.  Algebraic methods in statistical mechanics and quantum field theory , 1972 .

[32]  F. Strocchi,et al.  An Introduction To The Mathematical Structure Of Quantum Mechanics , 2008 .

[33]  Eric Dubois The Structure and Properties of Color Spaces and the Representation of Color Images , 2009, The Structure and Properties of Color Spaces and the Representation of Color Images.

[34]  J. Maxwell,et al.  The Scientific Papers of James Clerk Maxwell: Experiments on Colour as perceived by the Eye, with remarks on Colour-Blindness , 2011 .

[35]  F. Strocchi An introduction to the mathematical structure of quantum mechanics : a short course for mathematicians : lecture notes , 2005 .

[36]  Hermann Grassmann,et al.  Zur Theorie der Farbenmischung , 1853 .

[37]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[38]  Jan J. Koenderink,et al.  Color for the Sciences , 2010 .

[39]  William K. Wootters,et al.  The rebit three-tangle and its relation to two-qubit entanglement , 2014, 1402.2219.

[40]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[41]  M. Frei Analysis On Symmetric Cones , 2016 .

[42]  G. Buchsbaum,et al.  Trichromacy, opponent colours coding and optimum colour information transmission in the retina , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[43]  Peter Meer,et al.  Non-euclidean structure of spectral color space , 1999, Industrial Lasers and Inspection.

[44]  D. Ruderman,et al.  Statistics of cone responses to natural images: implications for visual coding , 1998 .

[45]  E. Provenzi Geometry of color perception. Part 1: structures and metrics of a homogeneous color space , 2020, Journal of mathematical neuroscience.

[46]  G. Gronchi,et al.  A variational model for context-driven effects in perception and cognition , 2017 .

[47]  A. F. Beardon,et al.  The Klein, Hilbert and Poincaré metrics of a domain , 1999 .

[48]  Ivar Farup,et al.  Interpolation of the MacAdam Ellipses , 2018, SIAM J. Imaging Sci..

[49]  Michel Berthier,et al.  When Geometry Meets Psycho-Physics and Quantum Mechanics: Modern Perspectives on the Space of Perceived Colors , 2019, GSI.

[50]  Edoardo Provenzi,et al.  From Riemannian Trichromacy to Quantum Color Opponency via Hyperbolicity , 2021, Journal of Mathematical Imaging and Vision.

[51]  Josep M. Oller,et al.  A distance between multivariate normal distributions based in an embedding into the Siegel group , 1990 .

[52]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .