Most Compact Parsimonious Trees

Construction of phylogenetic trees has traditionally focused on binary trees where all species appear on leaves, a problem for which numerous efficient solutions have been developed. Certain application domains though, such as viral evolution and transmission, paleontology, linguistics, and phylogenetic stemmatics, often require phylogeny inference that involves placing input species on ancestral tree nodes (live phylogeny), and polytomies. These requirements, despite their prevalence, lead to computationally harder algorithmic solutions and have been sparsely examined in the literature to date. In this article we prove some unique properties of most parsimonious live phylogenetic trees with polytomies, and describe novel algorithms to find the such trees without resorting to exhaustive enumeration of all possible tree topologies.

[1]  Yuan Zou,et al.  Analysis of Textual Variation by Latent Tree Structures , 2011, 2011 IEEE 11th International Conference on Data Mining.

[2]  Caroline Macé,et al.  Beyond the tree of texts: Building an empirical model of scribal variation through graph analysis of texts and stemmata , 2013, Lit. Linguistic Comput..

[3]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[4]  David A. Bader,et al.  ExactMP: An Efficient Parallel Exact Solver for Phylogenetic Tree Reconstruction Using Maximum Parsimony , 2006, 2006 International Conference on Parallel Processing (ICPP'06).

[5]  W. Fitch,et al.  Predicting the evolution of human influenza A. , 1999, Science.

[6]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[7]  P. Mierzejewski A new graptolite, intermediate between the Tuboidea and the Camaroidea , 2001 .

[8]  Jin-Kao Hao,et al.  Progressive Tree Neighborhood Applied to the Maximum Parsimony Problem , 2008, TCBB.

[9]  B. Korber,et al.  An African HIV-1 sequence from 1959 and implications for the origin of the epidemic , 1998, Nature.

[10]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[11]  Maria Luisa Bonet,et al.  Better methods for solving parsimony and compatibility , 1998, RECOMB '98.

[12]  David A. Bader,et al.  Fast character optimization in parsimony phylogeny reconstruction , 2003 .

[13]  D. Swofford,et al.  8 Phylogeny inference based on parsimony and other methods using Paup * THEORY , 2011 .

[14]  Stuart T. Nichol,et al.  Molecular Evolution of Viruses of the Family Filoviridae Based on 97 Whole-Genome Sequences , 2012, Journal of Virology.

[15]  A. Urbanek Oligophyly and evolutionary parallelism: A case study of Silurian graptolites , 1998 .

[16]  W. H. Day Computationally difficult parsimony problems in phylogenetic systematics , 1983 .

[17]  D. Sankoff Minimal Mutation Trees of Sequences , 1975 .

[18]  P. Goloboff Optimization of polytomies: state set and parallel operations. , 2002, Molecular phylogenetics and evolution.

[19]  M. Foote On the probability of ancestors in the fossil record , 1996, Paleobiology.

[20]  R. Gregory Textual Criticism , 1994, Perception.

[21]  W. Fitch Toward Defining the Course of Evolution: Minimum Change for a Specific Tree Topology , 1971 .

[22]  J. Hartigan MINIMUM MUTATION FITS TO A GIVEN TREE , 1973 .

[23]  Geoffrey Exoo A Simple Method for Constructing Small Cubic Graphs of Girths 14, 15, and 16 , 1996, Electron. J. Comb..

[24]  Barbara R. Holland,et al.  Faster exact maximum parsimony search with XMP , 2011, Bioinform..

[25]  Noga Alon,et al.  Approximate Maximum Parsimony and Ancestral Maximum Likelihood , 2010, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[26]  Fredrik Ronquist Fast Fitch-Parsimony Algorithms for Large Data Sets , 1998 .

[27]  J. Bull,et al.  Experimental phylogenetics: generation of a known phylogeny. , 1992, Science.

[28]  M. Spencer,et al.  Phylogenetics of artificial manuscripts. , 2004, Journal of theoretical biology.

[29]  Guy E. Blelloch,et al.  Mixed Integer Linear Programming for Maximum-Parsimony Phylogeny Inference , 2008, IEEE ACM Trans. Comput. Biol. Bioinform..

[30]  D. Bapst,et al.  paleotree: an R package for paleontological and phylogenetic analyses of evolution , 2012 .

[31]  A Dress,et al.  Split decomposition: a technique to analyze viral evolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Graham,et al.  Unlikelihood that minimal phylogenies for a realistic biological study can be constructed in reasonable computational time , 1982 .

[33]  Giri Narasimhan,et al.  Serial evolutionary networks of within-patient HIV-1 sequences reveal patterns of evolution of X4 strains , 2009, BMC Systems Biology.

[34]  Colin Flight How Many Stemmata , 1990 .

[35]  G. Edgecombe,et al.  THE TRIASSIC ISOPOD PROTAMPHISOPUS WIANAMATTENSIS (CHILTON) AND COMPARISON WITH EXTANT TAXA (CRUSTACEA, PHREATOICIDEA) , 2003 .

[36]  Michal Ziv-Ukelson,et al.  The Worst Case Complexity of Maximum Parsimony , 2014, J. Comput. Biol..

[37]  David S. Johnson,et al.  The computational complexity of inferring rooted phylogenies by parsimony , 1986 .

[38]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[39]  B.J.P. Salemans,et al.  Building stemmas with the computer in a Cladistic, Neo-Lachmannian, way: the case of fourteen text versions of Lanseloet van Denemerken , 2000 .