Fractal interpolation functions with variable parameters and their analytical properties

Based on a widely used class of iterated function systems (IFSs), a class of IFSs with variable parameters is introduced, which generates the fractal interpolation functions (FIFs) with more flexibility. Some analytical properties of these FIFs are investigated in the present paper. Their smoothness is first considered and the related results are presented in three different cases. The stability is then studied in the case of the interpolation points having small perturbations. Finally, the sensitivity analysis is carried out by providing an upper estimate of the errors caused by the slight perturbations of the IFSs generating these FIFs.

[1]  Wolfgang Metzler,et al.  Construction of Fractal Interpolation Surfaces on Rectangular Grids , 2010, Int. J. Bifurc. Chaos.

[2]  Douglas P. Hardin,et al.  Fractal Interpolation Surfaces and a Related 2-D Multiresolution Analysis , 1993 .

[3]  Sergios Theodoridis,et al.  IMAGE COMPRESSION USING AFFINE FRACTAL INTERPOLATION ON RECTANGULAR LATTICES , 2006 .

[4]  Hong-Yong Wang ON SMOOTHNESS FOR A CLASS OF FRACTAL INTERPOLATION SURFACES , 2006 .

[5]  Michael F. Barnsley,et al.  Hidden variable fractal interpolation functions , 1989 .

[6]  A. K. B. Chand,et al.  Hidden Variable Bivariate Fractal Interpolation Surfaces , 2003 .

[7]  Leoni Dalla,et al.  BIVARIATE FRACTAL INTERPOLATION FUNCTIONS ON GRIDS , 2002 .

[8]  P. Bouboulis,et al.  HIDDEN VARIABLE VECTOR VALUED FRACTAL INTERPOLATION FUNCTIONS , 2005 .

[9]  Stability of affine coalescence hidden variable fractal interpolation functions , 2008 .

[10]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[11]  M. A. Navascués,et al.  Generalization of Hermite functions by fractal interpolation , 2004, J. Approx. Theory.

[12]  Robert Malysz,et al.  The Minkowski dimension of the bivariate fractal interpolation surfaces , 2006 .

[13]  A. Chand,et al.  Smoothness Analysis of Coalescence Hidden Variable Fractal Interpolation Functions , 2007 .

[14]  Michael F. Barnsley,et al.  The calculus of fractal interpolation functions , 1989 .

[15]  A. K. B. Chand,et al.  Generalized Cubic Spline Fractal Interpolation Functions , 2006, SIAM J. Numer. Anal..

[16]  M. A. Navascues,et al.  Fractal trigonometric approximation. , 2005 .

[17]  Yang Ju,et al.  Study on generation of rock fracture surfaces by using fractal interpolation , 2001 .

[18]  Hong-Yong Wang,et al.  Perturbation error analysis for fractal interpolation functions and their moments , 2008, Appl. Math. Lett..

[19]  Nailiang Zhao,et al.  Construction and application of fractal interpolation surfaces , 1996, The Visual Computer.

[20]  Hong-Yong Wang,et al.  Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems , 2008, Comput. Math. Appl..

[21]  Michael F. Barnsley,et al.  Fractal functions and interpolation , 1986 .

[22]  Zhigang Feng,et al.  On Stability of Fractal Interpolation , 1998 .

[23]  Pantelis Bouboulis,et al.  A general construction of fractal interpolation functions on grids of n , 2007, European Journal of Applied Mathematics.

[24]  Wang Zhao Analytical Characteristics of Fractal Interpolation Functions with Function Vertical Scaling Factors , 2011 .

[25]  Monson H. Hayes,et al.  Using iterated function systems to model discrete sequences , 1992, IEEE Trans. Signal Process..