Length modified ridge regression
暂无分享,去创建一个
[1] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[2] L. Breiman,et al. Submodel selection and evaluation in regression. The X-random case , 1992 .
[3] T. Hassard,et al. Applied Linear Regression , 2005 .
[4] M. Stone. Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least s , 1990 .
[5] H. Theil. Principles of econometrics , 1971 .
[6] B. Hosmane. On a generalized stein estimator of regression coefficients , 1988 .
[7] G. C. McDonald,et al. Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .
[8] ScienceDirect. Computational statistics & data analysis , 1983 .
[9] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[10] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[11] T. Fearn. A Misuse of Ridge Regression in the Calibration of a Near Infrared Reflectance Instrument , 1983 .
[12] Arthur E. Hoerl,et al. Practical Use of Ridge Regression: A Challenge Met , 1985 .
[13] R. Sundberg. Continuum Regression and Ridge Regression , 1993 .
[14] W. Massy. Principal Components Regression in Exploratory Statistical Research , 1965 .
[15] BLSS, the Berkeley Interactive Statistical System , 1988 .
[16] J. Gani,et al. Perspectives in Probability and Statistics. , 1980 .
[17] J. W. Gorman,et al. Selection of Variables for Fitting Equations to Data , 1966 .
[18] David J. Hand,et al. A Handbook of Small Data Sets , 1993 .
[19] H. Wold. Soft Modelling by Latent Variables: The Non-Linear Iterative Partial Least Squares (NIPALS) Approach , 1975, Journal of Applied Probability.