Numerical stability of higher-order derivative methods for the pantograph equation

Abstract Dealing with numerical stability of higher-order derivative methods with variable stepsize is the purpose of this paper for pantograph equations. A new way to compute this kind of equation is provided, and a sufficient condition for the numerical stability of high order derivative forms is given. Some numerical examples are presented to confirm our theoretical analysis.

[1]  G. Derfel,et al.  Kato Problem for Functional-Differential Equations and Difference Schrödinger Operators , 1990 .

[2]  Y. Kuang,et al.  Monotonic and oscillatory solutions of a linear neutral delay equation with infinite lag , 1990 .

[3]  Concordance-homotopy groups and the nonfinite type of some ${\text{Diff}}_0 M^n$ , 1971 .

[4]  Arieh Iserles,et al.  Stability and Asymptotic Stability of Functional‐Differential Equations , 1995 .

[5]  Leon Lapidus,et al.  Numerical Solution of Ordinary Differential Equations , 1972 .

[6]  K. Mahler,et al.  On a Special Functional Equation , 1940 .

[7]  Yunkang Liu,et al.  Asymptotic behaviour of functional-differential equations with proportional time delays , 1996, European Journal of Applied Mathematics.

[8]  Yunkang Liu,et al.  Numerical investigation of the pantograph equation , 1997 .

[9]  M. Z. Liu,et al.  The stability of modified Runge-Kutta methods for the pantograph equation , 2006, Math. Comput..

[10]  John Ockendon,et al.  The dynamics of a current collection system for an electric locomotive , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  H. Brunner,et al.  Stability of collocation methods for delay differential equations with vanishing delays , 2010 .

[12]  A. Bellen,et al.  Numerical methods for delay differential equations , 2003 .

[13]  Yunkang Liu,et al.  On the t-method for delay differential equations with infinite lag , 1996 .

[14]  Yang Xu,et al.  H-stability of Runge-Kutta methods with general variable stepsize for pantograph equation , 2004, Appl. Math. Comput..

[15]  E. Süli,et al.  Numerical Solution of Ordinary Differential Equations , 2021, Foundations of Space Dynamics.

[16]  Yunkang Li,et al.  Stability analysis of $\theta$ -methods for neutral functional-differential equations , 1995 .

[17]  Arieh Iserles,et al.  On the generalized pantograph functional-differential equation , 1993, European Journal of Applied Mathematics.

[18]  J. McLeod,et al.  The Functional-Differential Equation y'(x) = ay(lambda x) + by(x). , 1971 .

[19]  Jack Carr,et al.  13.—The Functional Differential Equation y′(x) = ay(λx) + by(x) , 1976, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Toshiyuki Koto,et al.  Stability of Runge-Kutta methods for the generalized pantograph equation , 1999, Numerische Mathematik.

[21]  Nicola Guglielmi,et al.  Asymptotic stability properties of T-methods for the pantographs equation , 1997 .

[22]  V. A. Ambarzumian,et al.  On the fluctuation of brightness of the Milky Way / ირმის ნახტომის სიკაშკაშის ფლუქტუაციების შესახებ / О флуктуациях яркости млечного пути , 1945 .