Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries

[1]  Nebojsa Jojic,et al.  Extensive HLA class I allele promiscuity among viral CTL epitopes , 2007, European journal of immunology.

[2]  Clemencia Pinilla,et al.  Characterization of the peptide-binding specificity of the chimpanzee class I alleles A*0301 and A*0401 using a combinatorial peptide library , 2007, Immunogenetics.

[3]  Bjoern Peters,et al.  Integrating epitope data into the emerging web of biomedical knowledge resources , 2007, Nature Reviews Immunology.

[4]  Tomer Hertz,et al.  Identifying HLA supertypes by learning distance functions , 2007, Bioinform..

[5]  Tin Wee Tan,et al.  In silico grouping of peptide/HLA class I complexes using structural interaction characteristics , 2007, Bioinform..

[6]  Philip E. Bourne,et al.  The Immune Epitope Database and Analysis Resource , 2006, PRIB.

[7]  Morten Nielsen,et al.  A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..

[8]  Tomer Hertz,et al.  PepDist: A New Framework for Protein-Peptide Binding Prediction based on Learning Peptide Distance Functions , 2006, BMC Bioinformatics.

[9]  Bjoern Peters,et al.  HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. , 2005, The Journal of Immunology.

[10]  Bjoern Peters,et al.  The High Frequency Indian Rhesus Macaque MHC Class I Molecule, Mamu-B*01, Does Not Appear to Be Involved in CD8+ T Lymphocyte Responses to SIVmac2391 , 2005, The Journal of Immunology.

[11]  A Sette,et al.  A computational resource for the prediction of peptide binding to Indian rhesus macaque MHC class I molecules. , 2005, Vaccine.

[12]  Bjoern Peters,et al.  HLA-A*0201, HLA-A*1101, and HLA-B*0702 Transgenic Mice Recognize Numerous Poxvirus Determinants from a Wide Variety of Viral Gene Products1 , 2005, The Journal of Immunology.

[13]  Bjoern Peters,et al.  HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  John Sidney,et al.  Classification of A1- and A24-supertype molecules by analysis of their MHC-peptide binding repertoires , 2005, Immunogenetics.

[15]  Vladimir Brusic,et al.  MULTIPRED: a computational system for prediction of promiscuous HLA binding peptides , 2005, Nucleic Acids Res..

[16]  Vladimir Brusic,et al.  PREDBALB/c: a system for the prediction of peptide binding to H2d molecules, a haplotype of the BALB/c mouse , 2005, Nucleic Acids Res..

[17]  Alessandro Sette,et al.  Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method , 2005, BMC Bioinformatics.

[18]  Bjoern Peters,et al.  Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications , 2005, Immunogenetics.

[19]  P. Kloetzel,et al.  Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding , 2005, Cellular and Molecular Life Sciences CMLS.

[20]  Steve Wilson,et al.  The Immune Epitope Database and Analysis Resource: From Vision to Blueprint , 2005, PLoS biology.

[21]  J. Sidney,et al.  Characterization of the peptide-binding specificity of Mamu-A*11 results in the identification of SIV-derived epitopes and interspecies cross-reactivity , 2005, Immunogenetics.

[22]  J. Sidney,et al.  Identification of Seventeen New Simian Immunodeficiency Virus-Derived CD8+ T Cell Epitopes Restricted by the High Frequency Molecule, Mamu-A*02, and Potential Escape from CTL Recognition1 , 2004, The Journal of Immunology.

[23]  Ellis L. Reinherz,et al.  Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles , 2004, Immunogenetics.

[24]  Søren Brunak,et al.  Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach , 2004, Bioinform..

[25]  D. Flower,et al.  Identifiying Human MHC Supertypes Using Bioinformatic Methods , 2004, The Journal of Immunology.

[26]  O. Lund,et al.  Definition of supertypes for HLA molecules using clustering of specificity matrices , 2004, Immunogenetics.

[27]  Clemencia Pinilla,et al.  A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. , 2004, Molecular immunology.

[28]  John Sidney,et al.  Simultaneous Prediction of Binding Capacity for Multiple Molecules of the HLA B44 Supertype 1 , 2003, The Journal of Immunology.

[29]  S Brunak,et al.  Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach. , 2003, Tissue antigens.

[30]  John Sidney,et al.  Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules , 2003, Bioinform..

[31]  O. Lund,et al.  novel sequence representations Reliable prediction of T-cell epitopes using neural networks with , 2003 .

[32]  John Sidney,et al.  Class I molecules with similar peptide-binding specificities are the result of both common ancestry and convergent evolution , 2003, Immunogenetics.

[33]  M. Sathiamurthy,et al.  Population of the HLA ligand database. , 2003, Tissue antigens.

[34]  Pingping Guan,et al.  MHCPred: bringing a quantitative dimension to the online prediction of MHC binding. , 2003, Applied bioinformatics.

[35]  P. Kloetzel,et al.  MAPPP: MHC class I antigenic peptide processing prediction. , 2003, Applied bioinformatics.

[36]  John Sidney,et al.  The HLA Molecules DQA1*0501/B1*0201 and DQA1*0301/B1*0302 Share an Extensive Overlap in Peptide Binding Specificity1 , 2002, The Journal of Immunology.

[37]  Arne Elofsson,et al.  Prediction of MHC class I binding peptides, using SVMHC , 2002, BMC Bioinformatics.

[38]  J. Sidney,et al.  Characterization of the Peptide-Binding Specificity of Mamu-B*17 and Identification of Mamu-B*17-Restricted Epitopes Derived from Simian Immunodeficiency Virus Proteins1 , 2002, The Journal of Immunology.

[39]  Sylvia Janetzki,et al.  A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays. , 2002, Journal of immunological methods.

[40]  A Sette,et al.  Majority of peptides binding HLA-A*0201 with high affinity crossreact with other A2-supertype molecules. , 2001, Human immunology.

[41]  John Sidney,et al.  Structural Features of Peptide Analogs of Human Histocompatibility Leukocyte Antigen Class I Epitopes That Are More Potent and Immunogenic than Wild-Type Peptide , 2001, The Journal of experimental medicine.

[42]  R Simon,et al.  Combinatorial Peptide Libraries and Biometric Score Matrices Permit the Quantitative Analysis of Specific and Degenerate Interactions Between Clonotypic TCR and MHC Peptide Ligands1 , 2001, The Journal of Immunology.

[43]  S Brunak,et al.  Quantitative predictions of peptide binding to MHC class I molecules using specificity matrices and anchor-stratified calibrations. , 2001, Tissue antigens.

[44]  M. Bogyo,et al.  Global analysis of proteasomal substrate specificity using positional-scanning libraries of covalent inhibitors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  John Sidney,et al.  Measurement of MHC/Peptide Interactions by Gel Filtration , 1999, Current protocols in immunology.

[46]  John Sidney,et al.  Definition of the Mamu A*01 Peptide Binding Specificity: Application to the Identification of Wild-Type and Optimized Ligands from Simian Immunodeficiency Virus Regulatory Proteins1 , 2000, The Journal of Immunology.

[47]  Taku Suto,et al.  An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries , 2000, Immunogenetics.

[48]  S Brunak,et al.  Identifying cytotoxic T cell epitopes from genomic and proteomic information: "The human MHC project.". , 2000, Reviews in immunogenetics.

[49]  O. Schueler‐Furman,et al.  Structure‐based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles , 2000, Protein science : a publication of the Protein Society.

[50]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[51]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[52]  S Buus,et al.  Description and prediction of peptide-MHC binding: the 'human MHC project'. , 1999, Current opinion in immunology.

[53]  R A Houghten,et al.  Exploring immunological specificity using synthetic peptide combinatorial libraries. , 1999, Current opinion in immunology.

[54]  P. Cresswell,et al.  Antigen recognition. , 1999, Current opinion in immunology.

[55]  Todd M. Allen,et al.  Characterization of the peptide binding motif of a rhesus MHC class I molecule (Mamu-A*01) that binds an immunodominant CTL epitope from simian immunodeficiency virus. , 1998, Journal of immunology.

[56]  J. Sidney,et al.  The HLA-A0207 Peptide Binding Repertoire is Limited to a Subset of the A0201 Repertoire , 1997 .

[57]  S Uebel,et al.  Recognition principle of the TAP transporter disclosed by combinatorial peptide libraries. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Sidney,et al.  Uncovering subdominant cytotoxic T-lymphocyte responses in lymphocytic choriomeningitis virus-infected BALB/c mice , 1997, Journal of virology.

[59]  A Sette,et al.  Two complementary methods for predicting peptides binding major histocompatibility complex molecules. , 1997, Journal of molecular biology.

[60]  J. Sidney,et al.  The HLA-A*0207 peptide binding repertoire is limited to a subset of the A*0201 repertoire. , 1997, Human immunology.

[61]  J. Sidney,et al.  Analysis of cytotoxic T cell responses to dominant and subdominant epitopes during acute and chronic lymphocytic choriomeningitis virus infection. , 1996, Journal of immunology.

[62]  M F del Guercio,et al.  Specificity and degeneracy in peptide binding to HLA-B7-like class I molecules. , 1996, Journal of immunology.

[63]  Søren Buus,et al.  Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding , 1996, European journal of immunology.

[64]  M F del Guercio,et al.  Definition of an HLA-A3-like supermotif demonstrates the overlapping peptide-binding repertoires of common HLA molecules. , 1996, Human immunology.

[65]  M F del Guercio,et al.  Prominent roles of secondary anchor residues in peptide binding to HLA-A24 human class I molecules. , 1995, Journal of immunology.

[66]  S. Kienle,et al.  Decrypting the structure of major histocompatibility complex class I- restricted cytotoxic T lymphocyte epitopes with complex peptide libraries , 1995, The Journal of experimental medicine.

[67]  P. Parham,et al.  Overlap in the repertoires of peptides bound in vivo by a group of related class I HLA-B allotypes , 1995, Current Biology.

[68]  A Sette,et al.  Role of HLA-A motifs in identification of potential CTL epitopes in human papillomavirus type 16 E6 and E7 proteins. , 1994, Journal of immunology.

[69]  A Sette,et al.  Definition of specific peptide motifs for four major HLA-A alleles. , 1994, Journal of immunology.

[70]  K. Parker,et al.  Endogenous peptides with distinct amino acid anchor residue motifs bind to HLA-A1 and HLA-B8. , 1994, Journal of immunology.

[71]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[72]  J. Sidney,et al.  Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules , 1993, Cell.

[73]  K. Parker,et al.  Sequence motifs important for peptide binding to the human MHC class I molecule, HLA-A2. , 1992, Journal of immunology.

[74]  R A Houghten,et al.  Rapid identification of high affinity peptide ligands using positional scanning synthetic peptide combinatorial libraries. , 1992, BioTechniques.

[75]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[76]  E. Coligan Current protocols in immunology , 1991 .

[77]  Eric O Long,et al.  Structural model of HLA-DR1 restricted T cell antigen recognition , 1988, Cell.

[78]  A. McMichael,et al.  Cytotoxic T lymphocytes recognize a fragment of influenza virus matrix protein in association with HLA-A2 , 1987, Nature.