Analyzing Vortex Breakdown Flow Structures by Assignment of Colors to Tensor Invariants

Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid

[1]  Ronald Peikert,et al.  Vortex Tracking in Scale-Space , 2002, VisSym.

[2]  Hans Hagen,et al.  Physically based methods for tensor field visualization , 2004, IEEE Visualization 2004.

[3]  Lambertus Hesselink,et al.  Visualizing vector field topology in fluid flows , 1991, IEEE Computer Graphics and Applications.

[4]  Christian Rössl,et al.  Using Feature Flow Fields for Topological Comparison of Vector Fields , 2003, VMV.

[5]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[6]  Ken Fishkin A fast HSL-to-RGB transform , 1990 .

[7]  Chris Henze,et al.  Feature Extraction of Separation and Attachment Lines , 1999, IEEE Trans. Vis. Comput. Graph..

[8]  Jarke J. van Wijk,et al.  A Probe for Local Flow Field Visualization , 1993, IEEE Visualization.

[9]  Charles D. Hansen,et al.  Visualization of intricate flow structures for vortex breakdown analysis , 2004, IEEE Visualization 2004.

[10]  Hans-Peter Seidel,et al.  Stream line and path line oriented topology for 2D time-dependent vector fields , 2004, IEEE Visualization 2004.

[11]  P. G. Bakker,et al.  Bifurcations in Flow Patterns , 1991 .

[12]  P. Li,et al.  Visualization of Earthquake Simulation Data , 2003 .

[13]  David E. Breen,et al.  Level Set Segmentation and Modeling of DT-MRI human brain data , 2003 .

[14]  Mahdi Nezamabadi,et al.  Color Appearance Models , 2014, J. Electronic Imaging.

[15]  M. P. Escudier,et al.  Observations of the flow produced in a cylindrical container by a rotating endwall , 1984 .

[16]  Xavier Tricoche,et al.  Accurate and Ecien t Visualization of Flow Structures in a Delta Wing Simulation , 2004 .

[17]  Holger Theisel,et al.  Vector Field Metrics Based on Distance Measures of First Order Critical Points , 2002, WSCG.

[18]  David E. Breen,et al.  Level set modeling and segmentation of diffusion tensor magnetic resonance imaging brain data , 2003, J. Electronic Imaging.

[19]  M. S. Chong,et al.  A general classification of three-dimensional flow fields , 1990 .

[20]  Hans Hagen,et al.  Visualization of higher order singularities in vector fields , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[21]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[22]  J. V. van Wijk,et al.  A probe for local flow field visualization , 1993, Proceedings Visualization '93.

[23]  J. Reyn,et al.  Classification and description of the singular points of a system of three linear differential equations , 1964 .

[24]  Lambertus Hesselink,et al.  The topology of symmetric, second-order tensor fields , 1994, Proceedings Visualization '94.

[25]  Lambertus Hesselink,et al.  Topology of second-order tensor fields , 1995 .

[26]  Andrew S. Glassner,et al.  How to derive a spectrum from an RGB triplet , 1989, IEEE Computer Graphics and Applications.

[27]  M. Rütten Topological Analysis of the Vortex Breakdown in a Closed Cylinder with a Rotating Lid , 2004 .

[28]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.